
SOVIET PHYSICS JETP VOLUME 36 (9), NUMBER 1 JULY, 1959 

CYCLIC MOTION OF CHARGED PARTICLES IN AN ELECTRIC FIELD 

A. A. KOLOMENSKI I and FONG SOY -CEN 

P. N. Lebedev Physics Institute, Academy of Sciences, U.S.S.R. 

Submitted to JETP editor July 24, 1958 

J. Exptl. Theoret. Phys. (U.S.S.R.) 36, 271-276 (January, 1959) 

Expressions are obtained for the cyclic motion of charged particles in an electric guide field. 
This field can be produced by a system of appropriate lenses (weak-focusing or strong-focus
ing). Resonance acceleration is considered; in particular, we consider phase stability (phase 
focusing). This is analogous to the usual phase focusing in magnetic fields. An investigation 
is made of the effect of electromagnetic radiation (including quantum fluctuations) on the mo
tion of electrons in the electric field. The case in which part of the particle trajectory is in an 
electric field and part in a magnetic field is also treated. 

THE cyclic motion of charged particles in various 
magnetic-field configurations has been considered 
at great length in the literature. This work per
tains chiefly to accelerators, microwave generators, 
isotope separation, and so on. However, up to now 
no investigations have been made of the cyclic mo
tion of charged particles in electric fields, although 
this motion is characterized by a number of inter
esting features. We may note that various systems 
of electric lenses can be used and, indeed, have 
been used (cf. reference 1) in analog models of 
large magnetic accelerators.* Problems associ
ated with the radiation of relativistic electrons 
moving in magnetic fields have been considered in 
a number of papers. From the theoretical point of 
view it is of interest to compare these results with 
those obtained when radiation effects are taken into 
account in analyzing the motion of electrons in an 
electric guide field. It is also of interest to extend 
the analysis of phase focusing to the case of cyclic 
motion in electric fields; phase focusing has, so 
far, been considered only in connection with the 
motion of particles in magnetic fields. 

1. MOTION OF PARTICLES IN AN AXIALLY 
SYMMETRIC ELECTRIC FIELD, NEGLECT
ING RADIATION EFFECTS 

We consider a circle of radius rs in an axially 
symmetric electric field character.i.zed by the plane 

*The practical application of electric guide fields in accel
erators is hindered by the fact that the force exerted on a par
ticle by an electric field (expressed in v/cm) is 300 {3 times 
smaller than the force exerted by a magnetic field (measured 

of symmetry, z = 0. In the first approximation the 
components of this field, which satisfy the condi
tions 'for vanishing divergence, can be written in 
the form 

~r (r) = ~o (rs) (1 - n.xjr.), 

~z (z) =- ~0 (rs) (1- ne) zjr5 , X= r- r 5 • 

(1.1) 

The parameter ne =- (rs/ ~0 ) 8~ /8r, which 
is introduced in analogy with the customary mag
netic field index, n, can be called the electric 
field index. In a cyclindrical coordinate system, 
the equations of motion of a charged particle in a 
field described by (1.1) and an auxiliary accelerat
ing field ~0 • are of the form 

For resonance acceleration 
t 

Ve ={,~-cos [ ~ (•)0dt- q~ J, 
0 

(1.2) 

(1.3) 

(1.4) 

(1.5) 

where q = w0 I w is the frequency multiplication 
factor and w0 and V0 are the frequency and am
plitude of the voltage. In an induction accelerator 

Ve = (1/2'-c) i31Jjot, (1.6) 

where <I> is the magnetic flux through the orbit. 
The following relations hold in the equilibrium 

orbit 

V ~ .. 
(!) = e&;,c [ -~ _ + (_§_)2 _ -,1--] ' (,} = 1-~; Es (1. 7) 

Eo ; e&;"r s. 2 ' "' o,2 E ' l's _.,. s 

in oersteds). Yet electric fields are used widely in the auxil
iary ion and electron optical systems for injection and extrac
tion of particles in large accelerators. Electric fields can be 
in electron models of proton accelerators. where E is the total energy of the particle and 
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the subscript s denotes equilibrium quantities. 
The motion is analyzed in the manner usually 

employed in an axially symmetric magnetic accel
erator. In particular, it is possible to introduce 
the notion of betatron (fast) oscillations (radial 
and vertical) and synchrotron (slow) oscillations. 
There is, however, an important qualitative differ
ence between the two cases; this distinction can be 
understood if one assumes that both guide fields 
remain constant in time. In the magnetic case the 
force that acts on the particle is perpendicular to 
the velocity and the particle energy is not changed. 
In the case of motion in an electric field the force 
which acts on a particle which executes oscilla
tions is not always perpendicular to the direction 
of motion. Hence, although the time average of 
the particle energy remains constant, the energy 
itself varies with time. We can expand all quapti
ties about the equilibrium orbit. Considering first
order terms [we first consider the case of reso
nance acceleration, Eq. (1.5)] and introducing the 
relations 

!:;.£ r->2 • 
t's [ X <p ] -= --2 --- --·- ' 

• Es i-~5 r, qw (1.8) 

(where cp is the particle phase with respect to 
the accelerating field), we have from Eqs. (1.2) 
to (1.4), in the linear approximation, 

(1.10) 

( £, , w) x X eV0w . 
-- B2 -- -r- - -- ~ 2 -- - -, - sm co,<l~ 

's £ 5 w r5 s r5 2"£, · ' 

£ 
z+ E'z+(•J2 (ne-1)z=0. (1.11) 

s 

The change of energy in the electric guide field is 
given by the term - 11~x/rs in Eq. (1.10). The 
radial betatron and synchrotron oscillations are 
given by the equations 

where 

.. E, 2 
X+ E ,\; + w2 (3- n,- ~s) X= 0, 

s 

d ( £ 5 • ) eV0 eV0 -·-- -- ~ - ---coos cp = -- - coscp, 
dt qw2K1 21t 2" ' 

(1.12) 

(1.13) 

(1.14) 

The betatron oscillations in the vertical and 
radial directions are characterized by the follow
ing frequencies respectively: 

Wz=wVne- 1, w,=wV3-n,-~~- (1.15) 

For stability the following condition must be satis
fied: 

(1.16) 

The width of the ne stability region depends on 
the particle velocity: when 11 = 0 this region is a 
maximum, when 11 = 1 it is a minimum. In this 
respect the conditions in (1.16) differ essentially 
from the well-known stability requirement on mo
tion in a magnetic field, 0 < n < 1; the particle 
velocity does not enter in the magnetic case. 

We may note that the relativistic effect in the 
dependence of wr ,z / w on 11 can cause a signifi
cant change in the focusing properties of electro
static lenses. For example, in electron optics it 
is generally assumed that in a cylindrical conden
ser ( ne = 1 ) the image is at an azimuthal angle 
of 127° with respect to the source (cf. for example 
reference 2). However, examination of Eq. (1.15) 
indicates that this relation is valid only in the non
relativistic case, i.e. when 11 = 0. The angle indi
cated above changes at relatively small electron 
energies, becoming 180° when 11 = 1. 

We now consider the synchrotron oscillations 
in an electric field; in some respects these also 
differ from the synchrotron oscillations in an ax
ially symmetric magnetic field. In the expression 
for the frequency of synchroton oscillations, 

(1.1 7) 

the quantity K1 for the magnetic accelerator cor
responds to the parameter K defined by the re
lations 

Llw I w =- KllE/E51 

M I r, = ocllp I p,, K = 1 - ( 1 - oc) 1 ~~. 
(1.18) 

where p is the particle momentum. 
In the present case we have in place of the re

lation K1 = K 

K 1 =K1(1 +a), oc=(2-~~)1(1-n,). (1.19) 

We may note that in contrast with the magnetic 
case, where a = 1/ ( 1- nm), the quantity a de
pends on the particle velocity. It is apparent at 
"critical" energies (i.e., energies such that E = 
Ecr = ..j- neEo ) K = 0 and phase focusing no 
longer obtains [cf. Eq. (1.19)]. When ne > 0 
(i.e., when the electric field falls off radially) 
there is no critical energy. 

2. MOTION OF PARTICLES IN AN AXIALLY 
SYMMETRIC FIELD WITH RADIATION 
EFFECTS TAKEN INTO ACCOUNT 

In analyzing the motion of a relativistic electron 
in an electric field it is necessary to take account 
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of radiation effects. We start with the procedure 
used in reference 3, analyzing the radiation effects 
within the framework of classical electrodynamics 
and assuming that in the equilibrium orbit the radi
ation losses are compensated by the electric accel
erating field. In the right side of Eqs. (12) to (14) 
we add terms to take account of the radiation (the 
small parameter is 1/y where y = 1/ ~ . 
After some simple transformations we obtain the 
radial equation 

X + [2Esl Es + 3Wsl Es -201.QJ ;·+ w2 (2- ne); 

+ W2 [(2- ne) (E. IE,- 2 b. I .Q) + (3- 4ne) w s IE,] x(2.1) 
+ w2.Q2 (2- n,) x = 0, 

and the equation charcterizing the vertical oscilla
tions 

z + (E.IEs + W.IE.)z + w2 (n,- l)z = o, (2.2) 

where W s is the radiated power 

(2.3) 

and Q is given by Eq. (1.18). 
In the first approximation we find that the radi

ation leads to damping of the oscillations ( assum
ing compensation of the radiation losses ) ; this 
damping is described by the expressions 

t 

( ) E-'1 [ 1 3+n, ~ W s ] afr t ~ s 'exp --"-- - d~ ' 2 2-n, £ 8 
0 

(2.4) 

t 
(t) E-'I•,Q'I [ 1 3-4n, ~ W, ] (2 •5 ) asr ~ s •exp - -""-- --de 

2 2-n, 0 E, ' 

t 

az(t) ~E ~·;, exp [-+ ~ ~· d~ J, 
0 s 

(2.6) 

where afr and asr are respectively the ampli
tudes of the fast (betatron) and slow ( synchro
tron) oscillations. 

These expressions are analogous to those ob
tained for motion in a magnetic field by Kolomenskii 
and Lebedev.3 As in the magnetic case, the damping 
term, az ( t), is independent of n; this follows 
from the assumption of the existence of a plane of 
symmetry, z = 0. In order for the motion along r 
and z to be stable in the absence of radiation ef
fects, the quantity ne (for {3 = 1 ) must satisfy 
the condition 

2 >ne > 1. (2.7) 

On the other hand, it is apparent from Eqs. (2.4) 
and (2.5) that to have damping of the radial fast 
and slow oscillations the following condition must 
be satisfied when radiation is taken into account: 

(2.8) 

Obviously (2. 7) and (2.8) cannot be satisfied simul-

taneously. Thus, the motion of an electron in an 
axially symmetric electric field is found to be un
stable (if the radiation losses are compensated). 
Under certain conditions, however, stable motion 
can be achieved, for example, by means of an auxil
iary axially symmetric magnetic field. If a mag-

n 
netic field Hz = Hzo ( rs /r) m acts on the electron 

n 
in addition to the electric field & r = & ro ( rs I r) e, 
relativistic equilibrium is given by the relation: 

eH.0r, = kE,, e&rors = (1- k) E,, 0 < k ~ 1, (2.9) 

where k characterizes the relative effect of the 
magnetic field on the circular motion of the particle. 
When k = 0, the field is entirely electric; when 
k = 1, the field is entirely magnetic. 

We introduce the effective index 

(2.10) 

where by nm and ne we denote respectively the 
magnetic and electric field indices. It can be shown 
that if (2.9) is satisfied the equations of motion be
come 

.... (E 11 w) X+ 2£: -2n+3 £: x+w2 (2-k-nerr)X 

2 [ (£. n) w. ] " + W (2- k -neff;) E, -2 [.i + (3-4neff) £-; X 

(2.11a) 

(2.12) 

where 

.Q2 = qw2eV0 sin Cfs I 21tEs (2- k- neff). 

The damping associated with compensated radiation 
is characterized by 

t 
, [ 1 3-3k+neff \' W, ] 

C.rr (tJ ~ exp -2 2-k-n rr f£" d~ , 
e 0 s 

t 

[ 1 3-4neff \ W s ] 
Csr ( t) ~exp - -2 2-k-neff j £.de ' 

0 
t 

C.( t)~ exp [-+ ~: • d; J. 
0 s 

(2.11b) 

(2.13) 

(2.14) 

Since the frequency of the radial betatron oscilla
tions is given by w ..j 2- k- neff , the stability con
ditions (2. 7) and (2.8) become 

1 - k < neff < 2 - k, (2.15) 

(2.16) 
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The inequalities in (2.15) and (2.16) yield 

1-k<neff < 3/4, 1/4~k< l. (2.17) 

In the nm -ne plane the region of stability lies be
tween two parallel lines, one of which passes through 
the point ( 0, 1 ) and the other through the point 
( i, i ). The width of the stability region is 

d = { cos 9 ( 1 - } tan 9) , 

where 
ti-k rp =tan- -k-

is the slope of the lines with respect to the z axis. 
The maximum and minimum values of d are: 
dmax = i ( k = 1 ) and dmin = 0 ( k = ! ) . 

It is also possible to compute the effect of quan
tum radiation fluctuations on the motion of an elec
tron in axially symmetric electric and magnetic 
fields. If the condition E « El/2 = m 0c2 [rm0c/h] 1/l 
is satisfied this calculation can be carried out by 
the classical method used in reference 3. Carry
ing out these computations, we find the mean-square 
amplitude of the oscillations: 

(2.18) 
t t 3 

X ~exp[- ~e~:~- 3k ~-~5 d"f/]E: dx, 
o neff x s Eo 

(2.19) 

t t 6.5 
\ [ 3- 4neff \ W s ] Es -'/, 

X J exp - 2-k- ) E- dY1 '"T-5 V dx, 
0 neff X "S Eo 

t t 
(a2) = -~ bi\wEs I exp [-I Ws d"f/] E~ dx (2.20) 

z 24 V3 nEo J J Es E4o ' 
0 X 

where A is the Compton wave length and b = 
e2/m0c2 is the classical radius of the electron. We 
may note that the mean-square vertical oscillations 

are given by an expression which formally is the 
same as that for motion in a magnetic field (with
out an electric field). This complete similarity 
does not exist for the radial oscillations, although 
the corresponding formulas are similar in many 
respects. 

As in systems with magnetic guide fields, it is 
possible to use strong-focusing in electric guide 
fields; in this case ne is a periodic (generally 
speaking, of alternating sign) function of azimuth 
ne ( J. + J.o) = ne ( J.). Generally there is a differ
ence from the motion in a magnetic field character
ized by nm = nm ( J. ); this difference lies in the 
fact that the parameter f.J-x,z, which describes the 
frequency of the betatron oscillations (cf. refer
ence 4), depends on the particle velocity. If, how
ever, I ne I » 2, these oscillations will be de
scribed in the same way as the betatron oscilla
tions in magnetic strong-focusing systems. In 
particular, all results obtained for such systems 
when radiation effects are taken into account (cf. 
references 3, 5 and 6) can be carried over to the 
electric strong-focusing system. 
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