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The extended Lorentz group, including the complete Lorentz group and charge conjugation, 
is considered. It is shown that the use of irreducible projective representations of this ex­
tended group requires the existence of charge multiplets. Charge symmetry and associated 
production of strange particles follow from the invariance under reflections and charge con­
jugation and from the conservation laws for the electric and baryonic charges. The Pauli­
Giirsey transformation holds for free nucleons. The extension of the condition of invariance 
under this transformation to the case of interactions leads to isobaric invariance for strong 
interactions of all particles. 

1. INTRODUCTION 

IT is known that the strongly interacting particles 
form charge multiplets ( p, n, 1r+, 1r0, 1r-, K+, K0, 

etc.). Particles belonging to the same multiplet 
have almost identical masses and identical spins, 
but differ in their electric charges. In agreement 
with experiment one adopts the hypothesis of charge 
symmetry and the stronger hypothesis of charge in­
dependence. In the conventional theory this is ex­
pressed by the invariance under rotations in a cer­
tain formal isobaric space. The particles of a 
given multiplet are considered as states of the 
same particle with different projections of the iso­
baric spin. For example, the proton and the neu­
tron form the nucleon. The description of the nu­
cleon makes use of a reducible eight-component 
representation of the full Lorentz group. We have 
a similar situation (reducibility of the representa­
tion of the full Lorentz group ) for the other strongly 
interacting particles. 

Now the question arises: if it is required that 
the elementary particles be described only by ir­
reducible representations, would it then be pos­
sible to extend the Lorentz group and to find irre­
ducible representations of this extended group which 
automatically lead to the existence of charge mul­
tiplets and charge symmetries? The solution of 
this question is the subject of the present paper. 

We extend the Lorentz group in the following 
fashion. 

The wave functions of quantum theory are com­
plex functions. The operation of charge conjuga­
tion C, which takes a particle into its antiparticle, 
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is always represented by the product of a linear 
operator (matrix) and the antilinear operator of 
complex conjugation: 

C: (1) 

where C0 is determined such that 1/Jc transforms­
according to the same irreducible representation 
of the proper Lorentz group as 1/J. 

Besides the proper Lorentz group L, the spa­
tial reflections I, and the time reversal T, we 
also include the charge conjugation C in the ex­
tended group. Together with the conventional ir­
reducible representations of the extended group, 
we also consider its irreducible projective repre­
sentations.* 

The importance of using the projective repre­
sentations of the full Lorentz group was pointed 
out by Gel'fand and Tsetlin1 in connection with the 
theory of parity doublets of Lee and Yang. The 
possibility of using projective representations is 
connected with the indeterminacy of the phase fac­
tor of the quantum theoretical wave function. Subse­
quent to Gel'fand and Tsetlin, the projective repre­
sentations of the full Lorentz group were discussed 

*We are given a projective representation of the group G, 
if an operator R(g) is given for each element g of the group 
G such that the operator R(g1g2) = ex (g1 , g2 ) R(g1) R(g2) corre­
sponds to the product of group elements g,g2 • If cx(g,, g.)= 1, 
the projective representation reduces to the conventional one. 
In general, cx(g1 , g.) can also be equal to- 1. Anticommuting 
operators of the projective representation may thus correspond 
to commuting elements of the group. In particular, the conven­
tional spinor representation is a projective representation (the 
operations I = y4 and T = y4y, anticommute, whereas the 
spatial and time reflections commute). 
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by Taylor and McLennan.2 Taylor notes the con­
nection between these representations and the iso­
baric invariance. As only the full Lorentz group 
is considered, protons and neutrons, and r and 
1r0 mesons, differ with respect to their spatial 
parities. Salam and Pais, at the Seventh Rochester 
Conference, also discussed the need for a new defi­
nition of the operations of space-time reflections 
from which the charge symmetries would follow. 

In this paper we do not consider all irreducible 
projective representations of the extended group. 
We restrict ourselves to those necessary for the 
description of the strongly interacting particles. 
We shall show that multiplets, charge symmetries, 
and associated production of strange particles are 
immediate consequences of the standard conserva­
tion laws for the number of baryons and electric 
charge, and of the in variance with respect to the 
full Lorentz group and charge conjugation, if the 
nucleons, :S particles, and K mesons are de­
scribed by the new projective representations of 
the extended group, while the remaining particles 
are described in the usual fashion. 

In our theory the Pauli-Glirsey transformation 
holds for free nucleons. This transformation is 
connected with the isobaric invariance in a natural 
way. If the requirement of invariance under this 
transformation is extended to the interaction La­
grangian for the nucleons, the isobaric in variance 
for strong interactions follows for all particles. 

In this theory the Lagrangian for the interaction 
with electromagnetic fields can be easily written 
down with the help of the charge operator. It ap­
pears that the electromagnetic interactions are in­
variant only under Wigner time reversal, but not 
under Schwinger time reversal. 

The case of weak interactions, which do not con­
serve spatial parity, is more complicated and will 
not be discussed in the present paper. 

To be definite, we shall assume that the relative 
parities of all baryons are identical and that the re­
flection of the conventional spinors is performed 
with the help of the operator y4• All bosons are 
considered as pseudoscalars. We start with the 
discussion of the nucleons. 

2. THE FREE NUCLEON FIELD 

It is easily shown that the requirement 

f2 = 72 = c2 = 1 , (2) 

leads, for the case of four-component spinors, to 
the following expressions for the operators I, T, 
and C: 

a) 1: ~'=1A. 
b) T: ~~ = h'4ls~. 

~c = i&2f, 
(3) 

c) C: 

where T is the Schwinger time reversal for spin­
ors,3 and the matrices 'Yi are expressed in the 
Pauli representation. 

The following commutation relations hold be­
tween the operators I, T, and C: 

a)IT=-Tl, b)IC=-Cl, c)TC=-CT.- (4) 

We retain relations (2), but we require that, in 
contrast to the conventional theory, the sign in re­
lation (4a) is changed for nucleons, i.e., we demand 
that 

a)IT=Tl, b)IC=-Cl, c)TC=-CT. (4') 

The commutation relations (2) and (4') can only 
be satisfied by 8 x 8 matrices: 

a) I: 
b) T: 
c) C: 

~~="a X 14~• 
f = 1 X &4cp, 
o/c = i-ta X '12o/* • 

(5) 

where T are the Pauli matrices. These operators, 
together with the operators of the proper Lorentz 
group (in which 'YJ.J. should everywhere be replaced 
by 1 x 'YJ.l. ), form the irreducible projective rep.re-
13entation of the extended Lorentz group. The spmors 

ljJ = ( :~) have eight components. 

In this representation the Lagrangian for the 
free field is uniquely determined:* 

L = rf(l X~~()~-''+ i-r2 X Ism) cp, (6) 

where ljJ = 1/J*T (1 x y4 ). The field equations have 
the form 

(7) 

The Lagrangian (6) as well as Eq. (7) are invari­
ant with respect to the two one-parameter groups of 
transformations 

cp' = exp (iA.) ~. 

cp' = exp [i-r1 X ls"-l cp, 

and with respect to the three-parameter group 

(8) 
(9) 

cp' =a~+ b-r3 X &so/c. (10) 

where I a 12 + I b 12 = 1. 
The transformations (9) and (10) are the analogs 

of the Pauli transformations4 for the neutrino. They 
are different only in that y 5 is replaced by T 1 x 1'5 

and T 3 x y 5, respectively. 

*According to Schwinger L-> L T, where the superscript T 
signifies transposition of the operators of the Hilbert space. 3 
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We introduce the new four-component spinors 

~p=(c[;d-rs~2)/V2, c[;pc= (~cd-rs~c2)/V~. 

~nc = (- rscJi1 + th) IV~. cJin = (rscJiCl- c[;c2) Jlf~. 

they satisfy the ordinary Dirac equation 

r~o~cJi = -m~. 

Under the transformation (9) we obtain 

4~ = exp (i'i-) 1'P• 4~ = exp (i'l.) ~n. 

~~c = exp (- i'!.) ~pc, 4~c = exp (- i'i-) 4nc· 

(11) 

(12) 

(13) 

Transformation (9) may thus be viewed as a 
gauge transformation connected with the conserva­
tion law for the number of baryons. 1/!p, 1/>n, 1/!pc. 
and l/Jnc refer to the proton, neutron, antiproton, 
and antineutron fields respectively. 

The following transformation should be related 
to the conservation law for the electric charge: 

E: 4'=exp[(i/2)(1 X l +-=1 X 'j'5)).]4. (14) 

Indeed, under this transformation: 

E: 4~ = exp (i'l.) tjlp, ~~c = exp (- i).) t)lpc. 
(15) 

The three-parameter trnnsformation (10) is iso­
morphic to a rotation in the isobaric space. Indeed, 
if we form the conventional eight-component nucleon 

field l/JN = ( ~~). we have, under the transformation 

(10), 

4:V = exp [i (-c·l)]tjl.v, (16) 

where A. is a vector with real components At> A.2, 

A. 3; T are the usual 2 x2 Pauli matrices, and 

- I ' I _L il.a . I . I • b ·- sin I ), I (' .. a--cosl"- , D:"lsm A,, - -1-~.-1- J.2 -tA1). (17) 

An analogous isomorphism arising from a purely 
formal doubling of the number of components was 
pointed out by Glirsey. 5 

3. INTERACTION. OF NUCLEONS WITH ORDINARY 
BOSONS 

only consider interaction Lagrangians without de­
rivatives): 

L0 = ig0~'ta X 'l's!JI:Po = igo (P'l'sP- nr5n) 9o = igo~N"=a'l's~N:Po• 
(19) 

the meson field cp0 couples to the protons and neu­
trons with a different sign, and cp 0 may be identi­
fied with the neutral 1r0 meson. 

If the neutral meson cp0 were a spatial pseudo­
scalar, but had negative time-parity, we would 
uniquely obtain the interaction Lagrangian 

(20) 

cp0 may be related to the hypothetical Po meson. 
For the Lagrangian describing the interaction 

of nucleons with a charged pseudoscalar boson 
field cp: 

1: cp' = -cp, 
T: cp' = 9· 
C: 9c = cp* 

we similarly obtain the unique expression 

L = ig ~4c9•-~c4:P) = 2ig (iJrsnrr* + ft'l'sP'fl). (21) 

We may thus assume that cp ( cp*) describes 
1r- ( 1r+) mesons. 

The charge symmetry (i.e., the possibility of 
the simultaneous interchange p ~ n, 1r+ ~ 1r-, 

1r0 ~ - 1r0 ) of the interactions (19) and (20) is ob­
vious. The general form of the Lagrangian for 
interactions with 1r mesons is 

If we now require that not only the free nucleon 
Lagrangian, but also the interaction Lagrangian be 
invariant under transformations of the three-param­
eter group, then g = g0 /-12 = g7r /-12 , and 

Under the transformation (10) the meson fields 
transform according to 

(23) 

(-t·T:)' =exp[i(-.·A)](-c•T:)exp[-i(-c·A)], (24) 

where the masses of the 1r+, 1r-, and 1r0 mesons 
must be identical. 

We first consider the interaction of nucleons with We have thus arrived at the conventional iso­
a neutral pseudoscalar field cp 0 with positive "time- baric-invariant theory of the interaction between 
parity:" 

1: 

T: 
C: 

'?o =- CFo• 

9o ="" 9o• 
CFoc = :Po· 

(18) 

The requirement of invariance with respect to 
I, T, C, transformation (9), and E lead to a 
unique interaction Lagrangian (in the following we 

1r mesons and nucleons. 

4. FREE K MESONS 

The conventional representation of the extended 
Lorentz group for bosons is exhausted by the 1r 

mesons. We shall describe the K mesons by the 
projective representation in which 
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12 = I, C2 = I, T 2 = - I, 
(25) 

1T=T1, 1C=C1, TC=CT. 

The simplest irreducible representation con­
sistent with these commutation relations is two-

dimensional, cp = (:~). The operators I, T, 

and C have the form 

1: rp ' = -<p, 
T: rp ' = i-rztp, (26) 
C: ?c = rp•. 

We identify the ~ meson with CfJ1o the K0 

meson with cp2, the K- meson with cpf, and the 
K0 meson with cp~. The conservation law for the 
electric charge is then connected with the trans­
formation 

E: rp' = exP[ f (I +"a) )}r· 
Indeed, with this transformation, 

W' = exp (iA) W,· K-' = exp (-iA) K-, 

KO' = Ko, i(o' = l(o. 

(27) 

(28) 

The conservation law for the hypercharge corre­
sponds to the transformation cp' = exp (iT 3A. ) cp, 
so that 

K+' = exp (i}.) K+, 
K-' = exp (-iA)K-, 

K 0 ' = exp ( i/.) K0 , 

l(o' = exp ( -iA) K,o. (29) 

5. INTERACTION OF K MESONS WITH NUCLE­
ONS. A AND ~ PARTICLES 

We now turn to the investigation of the interac­
tion of K mesons with nucleons. Since both the K 
mesons and the nucleons transform according to the 
projective representation of the extended Lorentz 
group, and since the baryonic charge is conserved, 
an additional baryon must necessarily participate 
in the interaction. This requirement inevitably 
leads to the law of associated production of strange 
particles. We first consider the case of a neutral 
baryon. We already said earlier that the relative 
spatial parities of all baryons are, for definiteness, 
assumed to be identical: 

1: (30) 

For the nucleon transformation T there are two 
possibilities for the unknown baryon: 

(31) 
T: 

(32) 

We have to introduce the antibaryon Yoc into 

equations (31) and (32), since the transformation 
T for the nucleons anticommutes with the trans­
formation9 related to the conservation of the bary­
onic charge. 

If we choose (31) for T, then the only form of 
the Lagrangian invariant under the transformations 
of the extended Lorentz group and the transforma­
tions (9) and E is 

L = i g ~ (I X Is - -:J X I ) ( I X I + "a X I ) rp X Yo 
-l(l X"(5 + -r1X I) (I X 1- 'taX I)?* XY0 ] +Herro. conj. 

(33) 

In going from 1/J and cp to the operators of the 
nucleon and K meson fields, we obtain the usual 
form for the Lagrangian for the interaction of nu­
cleons with A0 particles: 

L = igA (P&5AoK+ + nr5AoK0 ) +Herro. conj. (34) 

The transformation law (32) for T leads to a 
Lagrangian that differs from expression (33) only 
by a plus sign between the two terms of expression 
(33). It corresponds to the ~ 0 particle: 

(35) 

We thus arrive at the conclusion that the trans­
formation laws for A0 and ~ 0 corresponding to 
the transformation T for the nucleons, differ by 
their signs. We now consider the interaction of 
nucleons with charged baryons. We can find a La­
grangian which is invariant under charge conjuga­
tion, space inversion, and time reversal, and which 
is consistent with the conservation laws for the 
electric and baryonic charges, only if we require 
that, under T, 

T: E+--+ -&4&5 E;, E---+ -&4&5 Ed• (36) 

This implies that the masses of the 1:+ and 1:­
particles are equal. The Lagrangian has the form 

L =- ig [~(!X I- -;1 X &5 ) (1 X I --:a X I) t'* xE+ 

+ ~ c( I X I + "=1 X &5) (I X I + -;3 X I) rp X E-) + Herro. conj. 

(37) 

In conventional notation this can be written in the 
form 

L = ig.,;± (pr5E+Ko + firs E-K+) + Herro. conj. (38) 

The charge symmetry is obvious. 
If we now require that the interaction Lagrangian 

also be invariant under the Pauli-Glirsey type trans­
formation (10), we obtain 

g,;± = v:z-gl: == ,;2 (J • 
a Y oE, (39) 

The masses of 1: +, 1:-, and 1: 0 must be equal. 
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we· arrive at the usual isobaric-invariant Lagrang­
ian 

6. S: PARTICLES 

Still another possibility remains within the 
framework of these representations. In the projec­
tive representation (5), we can change the sign be­
tween the terms 1 x 1 and r 1 x y 5 in the transfor­
mation (14) connected with the conservation law for 
the electric charge: 

£: ljl' = exp H- (1 X 1- "1 X rsP-] ~· (41) 

At the same time we retain the transformation (9) 
connected with the conservation law for the bary­
onic charge. In all formulas we then simply have 
to replace p by :S0, n by :s-, K+ by R0, and 
K0 by K-. We again have charge symmetry. If 
we require invariance under the Pauli transforma­
tion even in the case of interaction, we obtain the 
usual isobaric-invariant Lagrangians. 

7. CONCLUSION 

We carried out the program which we set our­
selves in the beginning of this paper. We introduced 

the new irreducible projective representation of the 
extended Lorentz group. We showed that the exist­
ence of charge multiplets, charge symmetry, and 
associated production of strange particles are con­
sequences of the standard conservation laws. The 
isobaric invariance follows from the invariance 
under the Pauli-Giirsey type transformation for 
free nucleons. This transformation is applicable, 
since the number of components of wave functions 
transforming according to projective representa­
tions necessarily .had to be increased. 

We did not discuss the weak interactions from 
this point of view. This task is much more diffi­
cult and less unambiguous due to the violation of 
the parity conservation laws. 
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