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The article treats a method of calculating multiple-scattering curves with allowance for the 
finite dimensions of the nucleus. In the calculation use is made of the experimental results 
on the scattering of fast electrons by nuclei. 

LET us denote by f (ex, ey, t) the angular distri- with the normalization condition 
00 

jf(ex, t)dex= 1. 
0 bution function of charged particles at a depth t 

( g/ em 2 ) • The scattering angles of the particle 
are assumed small and be presented in the form 
of a vector 6 in the plane perpendicular to the 
direction of motion; ex and ey are the projec
tions of the scattering angle on two mutually per
pendicular planes through the initial direction of 
motion. The distribution function, for the case of 
small scattering angles, obeys the following kinetic 
equation 

df (flxflytl f1 N • • • • 
dl =- f (Bxbyi) ~.) A a (6x6y) d&xd6y 

-00 

00 

+ ~~ -~ a (6~6~) f (f!x- &~; By- fl~) d&~d&~. (1) 

Here N is Avogadro's number, A the atomic 
weight, (J (ex, ey) is the transverse scattering 
cross section. The boundary condition is chosen 
in the following form 

(2) 

We shall be interested henceforth in the distri
bution function for one angle only, either ex, or 
ey. This is caused by .the fact that it is much eas
ier to measure in a cloud chamber the projection 
of the scattering angle, than the three-dimensional 
scattering angle. We must therefore integrate the 
solution of Eq. (1} over one of the projection angles. 
The final result can be represented in the following 
form 

jNI 
Xexp LA 

where 

-<X> 

<X> 

f (Bx, t) = ~ f (Bx, By, t) dfly 
-00 

(3} 

(4) 

The solution (3) is valid for any scattering law, pro-
vided the scattering angles are small. 

We are interested so far only in pure Coulomb 
scattering from a stationary nucleus. This means 
that a (ex, ey) is the Rutherford scattering cross 
section with account for both the atomic and nuclear 
form factors: 

we employ the quantity universally used in the 
theory of multiple scattering 

(5) 

x~=(4nNtJA)Z(Z+ 1)z2e4fp2v2, (6) 

where Z is the charge of the scattering nucleus, 
z the charge of the scattered quantity (henceforth 
taken as unity); p and v are the momentum and 
velocity of the scattered particles, q the atomic 
form factor, and F the nuclear form factor. 

Moliere1•2 has shown how to obtain an exact for
mula that takes into account the screening of the 
Coulomb center. This reduces to replacing 
q2/(ek+e}) 2 with (ek+e}+<Pfu)-2 where 

tf'm = ('!:../ 0.885R0Z-'1•) V!.l3 + 3.76:x.2 ; (7) 

Here 7t is the wavelength of the incident particle, 
R0 is the radius of the hydrogen atom, while a = 
zZe2/t:iv. 

The nuclear form factor was measured by Hof
stadter3 for a number of elements. For electrons 
with energies on the order of several hundred Mev, 
the quantity F2 in (5) can be approximated by the 
following expression:4 

(8} 

The values of a characterize the scattering nu
cleus. For example, a= 2.36 x 10-13 em for lead. 
It must be noted that the choice of the analytic form 
(8} for the form factor is dictated exclusively by its 
suitability for further calculations. From the phys-
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ical point of view, this analytical form is not accept
able since it leads to an exponential distribution of 
the nuclear density. We should consider expression 
(8) only as an interpolation of the experimental re
sults in the region of electron momenta on the order 
of 100 Mev/c. It is natural to assume that expres
sion (8) remains valid also for scattering of par
ticles of a different kind in the saine range of mo
mentum variation. 

Using (5), (7), and (8) we can integrate the ex
ponential function (3) with respect to By. We obtain 

00 

f (flx) dflx = ! dflx ~ COS kx6x 
0 

00 

{ 2 \ ' ' '} X exp - 3 X~ ) (1 - coskA) B (flx) dflx , (9) 
0 

where 

+ 9j2 (fl~ + Cfl~uc)'/, + 12/ <:p~uc{&~ + <:p~uc)'j,. {10) 

We denote here cpnuc = 1/ka. It is easy to see that 
the probability of a single scattering in the interval 
of the planar angle Bx- Bx + ~ex while traversing 
the thickness t is Ya x~B ( Bx) dBx. 

The integral in the exponential of expression {9) 
is also found analytically; we obtain finally 

00 

f(flx)dflx=! dflx~ d~cos&;~ 
0 

· { X~~2 
( 1 0 577 I ~'Pm ) Xexp --2 - 2 - . - n - 2 -

(11) 

We have incidentally expanded K1 ( ~ cpm) and 
K0 ( ~ cp m) in a series, since the important region 
~ cpm « 1. When cpnuc » Xc we arrive at the ex
pression obtained by Moliere1 for the distribution 
function on a screened point Coulomb center. 

Expression (11) can be reduced to a form ame
nable to numerical computations. We introduce 
the variables. 

(12) 

i.e., we measure the scattering angles in units of 
the nuclear angle. 

2d6~ r . f (flx) dflx = -7t- ) COS flxY 
0 

2 

xexp {- !:!___ [!L (__!_- 0.577 -In Y'Pm ) 
'P!uc 2 2 2cp nuc 

2 
+ 8(-0.577 +In --K0 (y)) y 

The results of the integration will depend on the 
two parameters 

'Pml 'Pn~ (I.l4m.cz'1•ajl37h) [1.13 + 3.76 (Ze2 / hv)2 j'1•. (15) 

It is seen from these expressions that both param
eters depend only on the velocity of the particle v. 
This makes it possible to use identical curves for 
different particles of the same velocity for speci
fied values of t, A, and Z. 

Formula (13) was used to calculate the curves 
for scattering in lead plates 4.5 and 8.5 g/cm2 

thick for velocities of 0.61 c (muon momentum 
80 Mev/c), 0.73c (p = 110 Mev/c), 0.78c (p = 
130 Mev/c), arid 0.85c (p = 170 Mev/c), used in 
references 5 and 6 to process the experimental re
sults on the scattering of pions and muons, and also 
protons. It must be noted that it is customary to 
express the angles in units of the characteristic 
multiple-scattering angle,1 cp = Bxlxc-fB. We, 
however, have obtained curves [ Eq. (13)] in which 
the angles are expressed in units of the "nuclear" 
angle, e~ = Bxl cpnuc· If we rewrite (13) in the 
following form 

it becomes clear that it is easy to change to the 
variables cp. It is important to know that the use 
of the scale ( f1 ·Xc -fBI cpnuc), which must be per
formed, depends only on the velocity of the particle 
(but not on its mass), since D is a function of the 
velocity only. This is why even the recalculated 
curves can be applied to different particles of the 
same velocity. The graphs thus obtained were 
numerically integrated to find the mean values 
of the scattering angles and their mean squares. 
For the sake of illustration we list in the table 
several numbers (lead plate 8.5 g/cm2 thick). 
Some boxes contain two values. The upper values 
are computed for a distribution curve that is cut 
off at cp = 2.4, and the lower ones for cp = 2. 
The values of cp and (j'l for a point nucleus have 
been calculated from the Moliere distribution curve 
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while cp was calculated from the following Moliere 
formula 

(here J. is the mean value of the absolute magni
tude of the three-dimensional scattering angle). 
In the calculation of (ill for a point nucleus, the 
same procedure was used as in our case, but the 
cut-off was at c.p = 4. The fourth line yields Xc ..fB 
for muons. This quantity must be used to multiply 
the numbers in the table to obtain the results in 
degrees. 

vjc 1 0.61 1 0.78 1 0.85 1 ~~~t 
cleus 

- 0.53 0.54 0.56 0.60 'P 0.52 0.537 0.54 

(q,2)'/, 0.66 0.69 0.71 0.77 0.65 0.67 0.66 

XcVB 34°.6 20°,2 15°.5 
A 532 550 561 611 
B 672 694 711 776 

The theory developed above can be used to de
termine the mass from the scattering angle and 
range, measured in the cloud chamber. We intro
duce, after Olbert, 7 the quantity 

(16) 

where R is the range and e is the scattering 
angle in radians, while a is determined from the 
following empirical relation between the range and 
the quantity II = pv: 

(17) 

m is the mass of the particle, and Az is a con
stant which equals in our case 0.32 g/cm2 Mev. 
This relation is valid for the interval 0.05 ::5: II/mc2 

::5: 2. It is easy to see that the distribution function 
for the quantity 1J differs from the distribution 
function for the scattering angles c.p only in scale. 
The values of 7j and 17 2 are connected with those 
of cp and cp2 as follows 

"1 = 9 (zc VF pu, J (AzmeC 2 )" (~}\I-a 
mec / m 

( m \I- a 
= A r/z) ' (18) 

(19) 

Here me is the electron mass. These formulas 
can be used to determine the mass of the unknown 

particle m, since the dependence on pv drops out. 
The table lists the values of the coefficients 

[factor in front of (me/m)1-a], calculated for our 
case. The coefficients are given for a cut-off at 
c.p = 2.4. The values of A and B for a different 
cut-off parameter can be found if the correspond
ing values of cp and (ji2 are known for a suitable 
cut-off (the values given in the table correspond 
to a cut-off at C{Jmax = 2.4 and C{Jmax = 2). It is 
seen from the above that the results do not depend 
greatly on the cut-off parameter. Details on the 
determination of the mass can be found in refer
ence 7. As to the theory of multiple scattering 
with allowance for the finite dimensions of the 
nucleus, developed in the same reference, it is a 
poor approximation to the actual state of affairs. 

In conclusion we make several remarks regard
ing the limits of applicability of the formulas ob
tained. 

We consider first the scattering of particles 
with nuclear interaction in addition to Coulomb 
interaction (pions, protons, etc.). In this case 
one must replace u ( e~, Oy) and u ( 0, 0) of 
Eq. (3) by a particle-scattering cross section that 
accounts for the nuclear interaction, too. It should 
be noted that the nuclear scattering has a diffrac
tion character and the cross section for nuclear 
scattering may amount to a considerable fraction 
of the total differential cross section (we note that 
at small angles the cross sections for diffraction 
scattering may be considerably greater than the 
geometric cross section). 

The plotting of the multiple-scattering curve for 
the exact differential scattering cross section is 
made difficult by the lack of sufficient experimen
tal and theoretical data on the single differential 
cross section. However, certain conclusions with 
respect to the multiple scattering of nuclear-active 
charged particles can be made. 5 

Many estimates have been on the scattering of 
muons. Consideration was given to inelastic inter
actions that lead to the excitation of the nucleus 
and that imitate elastic scattering; the possibility 
of the muon having an anomalous magnetic moment 
was investigated; estimates were also made of the 
approximations made in the kinetic equation ( for 
example, the small-angle approximation, of the 
momentum losses in the plate, arid of other cor
rections. We shall not cite these estimates, in 
view of the many recent special papers devoted to 
these problems (for example, references 8 and 9). 

I wish to thank F. I. Strizhevskaya who calcu
lated many of the multiple-scattering curves. I 
am grateful to A. I. Alikhanyan, F. I. Arutyunyan, 
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and also V. G. Kirillov-Ugryumov and M. I. Da1on 
for discussions that have stimulated the perfor
mance of this work. 
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