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The disruption of a charged liquid drop is examined. The vibration energies of the parts of 
the drop are computed, as is the energy of their relative motion. The general results thus 
obtained are applied to nuclear fission. 

IN solving the problem of the breakup of a liquid 
drop into two parts, and in particular the problem 
of nuclear fission, the question arises of determin
ing the generalized coordinates and velocities of 
the fragments of the drop after breakup from the 
equation of motion of the drop prior to breakup. 
We shall show below that knowledge of the internal 
coordinates and velocities of the fragments makes 
it possible to estimate the excitation energy of the 
fragments during nuclear fission. 

Assume that the liquid is incompressible, that 
the motion of the liquid prior to and after breakup 
is potential, and that the radius vectors of the sur
face of the drop and of its fragments are of the fol
lowing form (we confine ourselves to an axially
symmetrical case): 

r(&)JR = l + EcxnPn(cos&); 

r; (&;)jR; = l + Ecx~> Pn (cos&;), i = l, 2. 

In each case the origin is located at the center of 
gravity of the drop. From this condition and from 
the conservation of volume we obtain the coeffi
cients a 0, a 1, a~i), and a~i) in ~erms of the 
remaining parameters an and ag>. 

Let us consider the change in speed of any mass 
element of the drop, D.md, during the time of 
breakup of the drop Tb: 

"p 

~vd = ~ fddtj~md= fd"'J~md. 
0 

We assume that Tb is so small, that Avd « Vd 
(this condition is satisfied in the case of nuclear 
fission). Then the velocities prior to and after 
breakup can be considered equal - this corresponds 
to the so-called shake-up method. Consequently, 

grad cp (x, y, z(z;)) = v~i) +grad 'P; (x, y, z,.), i = 1,2. (1) 

Here cp ( x, y, z ( zi)) is the velocity potential prior 
to breakup of the drop, referred to the origin of the 
coordinates of the i-th part of the drop [i.e., z is 
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assumed to be 'F ( zi - dg> ) ; d~i) are the distances 
from the center of gravity of the drop to the centers 
of gravity of its parts ] ; CfJi ( x, y, Zi) is the veloc
ity potential of the i-th part after breakup; v~i) is 
the velocity of the center of gravity of the i -th part 
after breakup: 

n=2 n=2 

Changing to rectangular coordinates in the ex
pressions for cp and cpi, we obtain from (1): 

• . • • • 2 

cx~il = (X2 ± 2cx3be; + 3tx4bei ± ... ' 
. • • 1/ 

cx~il = - (± cx3 + 3b~;cx4 ± ... ) (A;j A) '; (2) 

~~·> = (~4 ± ... ) (A;jA)''• 

(the minus corresponds to i = 1, the plus to i = 2 ) ; 
the relative velocities of the parts of the drop are 

(1) (2) • • • 2 2 
Ve = Ve + Ve = Ze = [1Z2 (bel+ be2) -<Za (bel- bd 

+ ~4 (b~1 + b~2)- . . J R; be,.= d~·>;R. 

These values of ~g> and Zc can be used as 
the initial conditions for the equations of motion of 
the parts of the drop. The initial values of the co
ordinates ag> and zc can be readily calculated 
if the shape of the drop before breakup is known. 1 

In the case of nuclear fission, the potential en
ergy U and the shape of the nucleus prior to fis
sion were calculated for the states corresponding 
to minimum energy, within the framework of the 
Frankel and Metropolis2 drop model ( see also 
reference 3 ) : 

U (y) = 3/! 0 e~ (x, y) A'1'e2jr0 ; 

~ (x, y) = 2.178 y2 (1- x)- 4.09 y8 (I- 0.645 x) 

+ 18.64 y4 (I - 0'.894 x)- 13.33 y5; 

X= Z2JAe; ~>=(Z2JA)er = 48-+-50; 

r 0 = (1.2-+-1.5)·10-13 em. 
<Z0 =- Y2 (1.06 + 9.76 .J0-4 f (y)); (3) 

cx2 = y (2.3 + 5.42. 1 o-4 t (y}); 

IZ4 = y2 [1.6 + y (3 + 2.84·10-3 f (y))]; 

a6 =- 2.36 .w-s f (y); as = 2aa; f (y) = (0.49- Yr4 • 
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The remaining an = 0. In view of the smallness 
of a 6 and a 8, we first neglect them; y is a gen
eral deformation parameter. The fission barrier 
corresponds to y = 1 - x. The thickness of the neck 
dn is close to zero ( dniR"' 0.1} when y = Yk ~ 
0.35. If shell effects are taken into account a 3 ;;e 0. 
At the experimentally observed value (Ad A2 < 0. 7} 
of the fragment-mass ratio. a 3 ~ 0.06.4 The ratio 
0! 3 I a2 at the break of the neck can be estimated in 
the following manner: 

OCsp/(,2P = rzsp/Ma., [(0t2p- rz2c)/Ma.,r1 

= (1-+- 2) rzsp (rz2p- ~cP = 0.07-+- 0.12. 

( .Ma2 is the time of descent from the saddle point 
to the break in the neck; .6.ta3 is the time of de
scent from the point at which a 3 stops being equal 
to zero to the break in the neck; .6.ta2 I .6.ta3 "'1 or 2; 
a 2b is the value of a 2 at the point of the break of 
the neck, a 2s is the value at the saddle point}; a 2b 
and a 2s were calculated from formula (3} for x = 
0. 7 to 0.8. The value of a 3b can thus be neglected 
(this introduces an error of 4 to 7% for &(i) and 
• • • n 
zc when a 3 = 0.1 a 2 ). 

Since the deformation of the nucleus past the 
saddle point is slow, 5 one can assume that the nu
cleus passes through the values an correspond
ing to the minimum of the potential energy and 
which are consequently determined by formula (3}. 
Then &n = ydan I dy. In particular, 

.;.4 = d2 (dat4jdy)f(dat2fdy) = ~ (y) ~2· 

At the point of breakup, i.e., at y = Yk ~ 0.35, 
we have {3 ~ 0.8. The kinetic energy of the drops 

after the breakup is of the form T (i) = ~ T g/n_. 
n,m 

nmax 
Since T » T (n ;;em), we have T(i) ~ ~ T(i). 

nm nm n=z nn 

In units of e 2lr0 we have 

1 

/~) = T ~ [(P~I) (p.))2jn2 + (P n (p.))2J [r; (tJ.)/ Rl]2n+t dp.. 
. -1 

Let us estimate the ratio TJ!>ITH> (for At ~A2 ). 
If di) ~ I~i) (see below), we have TiPlTW = 0.02 

to 0.04. One can therefore assume that aii) ~ 0. It 

follows from (3) that a~i) = 0 when y ~ 0.35.4 We 

can then confine ourselves to nmax = 3 in the ex

pression for ri ( Ji); a~i) and a~i) were found in 

reference 4 for various ratios A1 I A2. When At = 

A2 we have a~i) ~ 0.26, a~i) ~ 0.08, and 2bct ~ 

2.5. For these values of a~i) we have I~i) ~ 1.4 

(i) (i) (i) 
and I3 ~ 1.9. (The values of an , bci• and In 

of reference 4a have been revised). Let us esti
mate the ratio of the kinetic energy T(t) + T(2) of 
the internal motion of the fragments to the kinetic 
energy Tc = v~ 12 of the centers of gravity of the 
fragments ( J.L is the reduced mass of the frag
ments}: when At = A2, we find from Eq. (2) 
(0!4 ~ 0.8a2) that (T(1) + T(2))1(Tc + T(1) + T(2)) 
"' 0.45. This estimate is unfortunately not very 
accurate, for if we include the terms with as and 
a8 in the expressions for ag> and zc [see 
Eq. (3)], T(1} + T(2) turns out to be on the order 
of not 45%, but of 90 to 100% of the total energy. 
In view of the fact that the terms with as and a 8 

in (3) have been determined very approximately, we 
disregard them for the time being. But for further 
calculations it is essential that formulas (2) be re
vised. 

We note that to determine the absolute value of 
T c and T (i) it is essential to replace a 2 by a 
certain effective value. As is known, the law of 
conservation of energy is not obeyed rigorously 
in the "shake-up" method. Therefore, to satisfy 
the law of conservation of energy it is necessary 
to equate the energy T c + T (t) + T (2), expressed 
with the aid of formulas (2) in terms of a 2 = 
( a 2 )eff, to the energy of the nucleus prior to the 
breakup of the neck. If the force of friction for 
the degrees of freedom an in the descent from 
the saddle point is small, (this corresponds to 
spontaneous and threshold fission, see reference 1 ). 
the nuclear energy prior to the breakup is equal to 
the difference in the potential energy U ( y ) at the 
saddle point and at the point of breakup (for thresh
old fission), or to the difference in U ( y) at the 
ground state ( y = 0 ) and the point of breakup 
(for spontaneous fission). 

To determine the excitation energy of the frag
ments it is necessary to solve the equations of mo
tion (quantum or classical) for the degrees of 
freedom ag> and zc.t However, an approximate 
estimate of the excitation energy can be obtained 
by considering the sum of the internal kinetic en
ergies T(1) + T(2) and the energy of deformation 
of both fragments at the point of breakup of the 
neck: Eo = ug> + u~) + T(t) + T(2) = E~1 ) + E~2). 
As shown above, 

r<tl + r<2l = 1 [U (y0)- U (yd)]; 

Yo= I -x or Yo= 0; r>0.45. 

Bohr and Wheelers calculated ug> in an approxi-
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u2as 

:9 
:a (/J = Element 0 c: .c 0 +'::10 ., ... g o'ii! 

4>"' 
~8~ .. ., 

E.: 
u< l) + u< 2 l Mev 

d d I 
18.0 

T(l) T(2) M y=O. 45 2.0 0 
+ I evl y=O. 75 3.4 0 

E 0, Mev, y=0.45 20.0 18.0 
y=0.75 21.4 18.0 

mation that is quadratic in ~~i) and ~~i). Cor

rection terms of higher order in ~X) were ob
tained by Present and Knipp .7 The table lists the 
values of E0 calculated for four nuclei with 
At = A2 for spontaneous and threshold fission, 
using new values of r 0 and E: 8 r 0 = 1.22 x 10-t3 

em and E = 50.1 (and in the quadratic approxima
tion with respect to ~ (i) for U (i) ) . These data 

n d 
are also more accurate than those of reference 4a. 

As can be seen from the table, u~t) + u~) 

change very little with increasing Z21A (they de
crease slowly ) . The increase in Eo is thus due 
only to the increase in T(t) + T(2), i.e., U (y0)

U (yd). The rapid increase in I U (yd) I is clearly 
seen in Fig. 3 of reference 3. From the experi
mental data on the number of secondary neutrons, 
v, it follows that the increase in the fragment ex
citation energy with increasing Z2 I A corresponds 
to y "' 1 than to y = 0.45 (see reference 9), but 
y = 0.45 is only the lower estimate for y (see 
above). Furthermore, Eo is only approximately 
equal to the excitation energy of the fragments. At 
any rate it is clear that the increase in the excita
tion energy with increasing z21 A is due entirely 
to T(t) + T(2), i.e., to U(y0)- U(yd), and not 
to Ud (if a larger value is assumed for Yd 
I U (Yd) I will be greater). 

Let us now attempt to estimate, for a specified 
Z2A, the ratio of the excitation energies of two 
fragments, or the ratio E~t) IE~2), in the same 
approximation, as functions of At I A2. Numerical 
calculations show that ug> 1vg> depends little on 
Atf A2 (it diminishes slowly with diminishing 
At I A2 when A1 I A2 < 1). But since bet lbc2 = 
A2 I A1 (the distance between the center of gravity 
of the fragment and the common center of gravity 
is greater for a lighter fragment than for a heavy 
one), we have &g> > &~2) for A1 < A2. Accord-

Pu2"n Crn 2' 2 Cf'" 
't) 't) :!lc: ... c: :0 Ul d 

... c: I 
0 0 0 0 .. ., c: 0 0 Sponta-.c ... = :s.2 ..c: ... +'::10 do· ... 

.c ... ., ., neous ., ., 
0 0., 

., ., 
G).~ ~.~ ~~~ f.~ 

~ ... 
&4): 
flldt.:: ~ ... 

fission 
..C:"" 
[:< 

17.9 17.7 18.1 

3.2 0 5.2 1.9 5.4 2.0 
5.4 0 8.8 3.2 9.2 3.4 

21.1 17.9 22.9 19.6 23.5 20.1 
23.3 17.9 26.5 20.9 27.3 21.5 

ing to numerical calculations given in reference 4, 
~g) is also somewhat greater than ~~). Conse
quently, in spite of the fact that A~/3 < AY3, we 
nevertheless find that T(t) > T(2). Thanks to this, 
E~1) may turn out to greater than E~2) when 
A1 < A2 (this agrees with the experimental data 
of reference 1 0). E (6) IE(~) diminishes with further 
increase in At I A2, owing to faster decrease in 
vg>1v~2>. 

Consequently in this case, too, the main reason 
for th~ principal eff~ct ( E~1 ) > E~2) when A1 < A2) 
is T(1) and not u(1). We remark that allowance 
for &4 and &6 wofud increase the ratio E~1 ) IE~2) 
substantially, since &4 and &6 contain high powers 
of b01 and b02 . 

In conclusion, I express my gratitude to I. G. 
Kruitikova for doing the numerical calculations. 
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