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An analysis is given of Cerenkov radiation in an isotropic gyrotropic medium, with spatial 
di;>persion taken into account. The angular distribution of the Cerenkov radiation and the 
emergence of the radiation at the boundary of the medium are considered. 

1. INTRODUCTION 

DIELECTRICS are usually characterized by a 
dielectric constant which depends only on frequency 
w. However, the electric induction can also depend 
on the spatial derivatives of the field intensity. For 
example, if one takes account of the first spatial 
derivatives it is possible to describe the effects 
due to natural optical activity. The terms contain­
ing derivatives in the expressions which relate the 
electric field intensity and the electric induction 
are, generally speaking, of higher order than the 
electromagnetic field equations. These lead to the 
new solutions and new waves which have been in­
vestigated by a number of authors. t-a As has al­
ready been noted,2 one of the possible m~thods of 
observing effects related to spatial dispersion is 
to examine the Cerenkov radiation. 

It has been shown in reference 4 that the total 
energy loss of an electron which moves in an ar­
bitrary medium characterized by spatial disper­
sion is given by the following expression: 

ie'! 
F =- :!r. 2c2v 

. ~ I v.b-:-kiqkl• -.(v.b-:-k! vk) (q .b-:-klqk) + (v.b-:-kivk) 
X (q·v) '' ' ' \' ' ' dq, (1.1) 
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where the tensor bik is expressed in terms of the 
·dielectric permittivity tensor as follows: 

(1.2) 

The permittivity tensor Eik depends only on fre­
quency ( w) if spatial dispersion is neglected; 
however, if spatial dispersion is considered Eik 
also depends on the propagation vector q, i.e. 

(1.3) 

We first consider an isotropic medium. In this 
case Eq. (1.3) assumes the form 

(1.3a) 

while the expression for the total energy loss be­
comes:* 

+co 
ie2 ~ f=- --- <old<u 

·7t 

-co (1.4) 

where E = Et + E2· 
It follows from Eq. (1.4) that Cerenkov radiation 

will be excited at frequency w if the following con­
dition is satisfied: 

v > cjn, ((I)), (1.5) 

where the quantity ni ( w ) satisfies the relation 

(1.6) 

If spatial dispersion of the medium is neglected 
Eq. (1.6) defines a single function n ( w ). On the 
other hand, if spatial dispersion is taken into ac­
count this equation will in general, have several 
solutions ni = ni ( w ). If J is the angle between 
the direction of motion of the particle and the radi­
ation direction, since 

cos&;=cjvn,(u)), (1.7) 
we find that the Cerenkov radiation at frequency w 
is distributed over cones with opening angles Ji 
which are determined from Eq. (1.7). It is of in­
terest to consider the intensity distribution of the 
Cerenkov radiation over these cones. 

2. INTENSITY DISTRIBUTION OF THE CERENKOV 
RADIATION 

Carrying out the integration indicated in Eq.(1.4) 
with appropriate circuits of the poles in the complex 
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*The upper limit of the integration over k and k0 is de­
termined by the range of validity of the macroscopic analysis. 
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plane for k (cf. reference 5), we find that the en­
ergy loss due to Cerenkov radiation in the frequency 
interval w, w + dw is given by the expression 

(2.1) 

Eq. (2.1) represents the total intensity of the Ceren­
kov radiation as a function of frequency; this inten­
sity is a sum of intensities which are distributed 
over the individual Cerenkov cones defined by 
Eq. (1. 7). 

We now examine the different possibilities which 
arise when spatial 4ispersion of the medium is con­
sidered. 

At Cerenkov frequencies far from the resonance 
frequencies of the medium the solution of Eq. (1.6) 
can be found through the use of a "direct" disper­
sion expansion. Limiting ourselves to second spa­
tial derivatives,2 we have for the transverse waves 

D = (e0 (w)- oc (w) n2) E = s1 (w, n2CJJ2 / c2) E. (2.2) 

Hence, in the frequency regions considered here 
Eq. (1.6) has the single solution 

(2.3) 

and the Cerenkov radiation is distributed over a 
single cone given by Eq. (1. 7). In this frequency 
region ot ( w ) « 1; thus spatial dispersion of the 
medium has essentially no effect on the Cerenkov 
radiation of an electron in these cases. Equation 
(2.2), which gives the intensity of the Cerenkov ra­
diation at frequency w, assumes the form 

(2.4) 

dF = !.'_ 1-- c2 (1 + :x(w))(V2E0 (w)(J)dfiJ = ..£._ ~- c2jv2n:_ fiJdCrJ. 
c• 11 - ot ( w) 1 c2 2 -- Eu / n" 

On the other hand, dispersion becomes impor­
tant at Cerenkov frequencies close to the resonance 
frequencies of the medium. In this case, it is nec­
essary to use the "inverse" dispersion expansion 
in solving Eq. (1.6). If, as in the above paragraph, 
we limit ourselves to second spatial derivatives,2 

we have 

Thus, at these frequencies the dispersion equation 
(1.6) has two roots: 

(2.6) 

Ginzburg has shown2 that when {3 > 0, one of 
the roots of Eq. (2.6) is always smaller than unity 
and the Cerenkov condition (1.5) may not be satis­
fied. In this case the Cerenkov radiation is dis­
tributed overa single cone. However, when {3 < 0, 

the Cerenkov condition can be satisfied for both 
roots of (2.6) and the Cerenkov radiation will be 
distributed over two cones. The total intensity of 
the Cerenkov radiation is then given by the sum 
of two terms - the intensities of radiation over 
these cones: 

ez ,., 1 - c2jv2nJ 
dF = ---.-- L. 4 . wdw. 

c 1. 2 1 1 + ~nd 
(2. 7) 

In accordance with Eq. (2.7), the ratio of these in­
tensities is given by the following expression: 

It follows from Eqs. (2.6) and (2.7) that when 
E~ I {3 I « 1, n~ » n~ and 

/2//l~s~J~J/(l-c2jv2n~)~l. (2.9) 

It· follows from the foregoing that if the condition 
E~ I {3 I « 1 is satisfied the Ceren.kov radiation is 
concentrated almost entirely in the first (ordinary) 
cone. As Ginzburg has shown, in the optical region 
of the spectrum this condition is satisfied close to 
the center of an absorption line. Hence, for a non­
gyrotropic medium the new Cerenkov radiation 
could be observed at the center of the absorption 
line (at wavelengths such that D.A. < 5 A, when 
E~ I {3 I "' 1 ) . In this case the intensity of the new 
Cerenkov radiation becomes comparable with the 
intensity of the usual Cerenkov radiation. How­
ever, close to the absorption line one must take 
account of absorption of the radiation in the me­
dium. Estimates carried out in reference 2 indi­
cate that in actual materials the observation of 
Cerenkov radiation in the optical region of the 
spectrum would be possible only in sheets which 
are approximately 10-4 em thick. Thus the ex­
perimental observation of the new Cerenkov radi­
ation in an isotropic medium would be difficult 
because of absorption in the medium. 

In terms of the model proposed in reference 3, 
the real dielectric constant (at one of the natural 
frequencies of the medium) assumes the follow­
ing form when spatial dispersion in an isotropic 
non-gyrotropic medium is considered ( q = nws/ c): 

(2.10) 
w2 + w~- ~o --a. (w I c)2 n2 . 

The dispersion relation (1.6) now has two solutions, 
nL2, and the Cerenkov radiation is distributed over 
two cones. The total intensity of the Cerenkov radi­
ation is again given as the sum of two terms:_ 
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dF = 7 L.J 1--2 - 2- 1 + C2 2 (n;- 1)2 wd(u. e' "" ( c2 ) I a; w2 2 ~-I 
i=l.2 v ni wo 

' (2.11) 

We now consider Cerenkov radiation in an iso­
tropic gyrotropic medium characterized by spatial 
dispersion. Since spatial dispersion is important 
in frequency regions close to one of the resonance 
frequencies of the medium we use the "inverse" 
dispersion expansion: 

(2.12) 

Eq. (1.1), which characterizes the total energy loss 
of an electron moving in such a medium, assumes 
the form* 

+co k, 
ie2 \ ( 

F=·-;;- j )wdwkdk 
-coo (2.13) 

a+ y 2b 

where we have introduced the notation 

a = - + A .E.,- -~ .J_ k2 [ 1 2 ( 2 )] 

e:o t' wi \vi! I 

1 [ v2 1 c2 
( w2 2 )] 

X w• + k"v" C' - Eo -- ~ w2 -v2 + k ' 
(2.14) 

, - c2 { 2 [ v2 1 ,. c2 ( w2 2)] 
D - w2 -1- k"v" k c" - 8;;- - ~ w2 tl2 + k 

Examination of Eq. (2.13) indicates that Ceren­
kov radiation at frequency w is excited in an iso­
tropic gyrotropic medium with spatial dispersion 
if Eq. (1.5) is satisfied; the ni( w) in this equation 
are determined from the dispersion equation 

( 1 1 • \ 2 " " 2 ., w2 w2 ., -,----3/l"\ -'V-(>J"/l =0 /l"-----Lk-. ·(2,15) 
n2 eo 1 ) 1 ' c2 v2 1 

In general, Eq. (2.15) yields three different values 
of ni ( w ) so that in the case being considered the 
Cerenkov radiation is distributed over the surfaces 
of three cones with opening angles J.i, which are 
determined from Eq. (1. 7). In this case the total 
intensity of Cerenkov radiation at frequency w is 
given by the expression: (2.16) 

• ~l ai -1- Y2b; dF == - e- (u dw · . 
I ., ( 0 ' -4) ( -2 ·! P. ") 2 2 . I 2 2 I i~1.~.:l "' P -r n; n; - /•0- ,-ni c jw .- y c 

*It should be kept in mind that Eq. (2.13) gives the correct 
value of the loss due to Cerenkov radiation only for those 

.frequency regions in which the inverse dispersion relation 
(2.12) is valid (cf. reference 3). 

In frequency regions in which ywE0n « 1 and 
{3n2E0 « 1, Eq. (2.15) has two roots which are ap­
proximately equal 

(2.17) 

and a third root which is larger 

(2.18) 

where n~ = € 0• Consequently, if the radiation in­
tensities for the cones are to be of the same order 
of magnitude the fqllowing condition must be satis­
fied: 

(2.19) 

In the optical region of the spectrum yw2 ~ 10-5 

and {3 ~ 10-6 ; thus, n~ = 45. According to refer­
ence 2, this condition is satisfied at wave lengths 
such that t::;>.. ~ 100A as measured from the cen­
ter of the absorption line. It is apparent that ab­
sorption does not play an important role in a gyro­
tropic medium and that the experimental observa­
tion of the new Cerenkov waves may be possible. 

3. EMERGENCE OF CERENKOV RADIATION 
THROUGH THE BOUNDARY OF THE MEDIUM 

To determine the intensity of the Cerenkov radi­
ation which emerges from a medium it is necessary 
to consider effects at the boundary. The question 
of boundary condition then arises. It is apparent 
that the usual continuity conditions Dm = Dm, 
Hm = Hm, E2t = Ett and H2t = Htt still hold. How­
ever, new wave solutions are possible when spatial 
dispersion is taken into account and the usual boun­
dary conditions are found to be inadequate for de­
termining the amplitudes of these waves. As an 
additional boundary condition Pekart has introduced 
the condition that the dipole moment per unit vol­
ume, due to the excitation of exciton waves in the 
medium, must vanish 

47tP = D - s'E = ~ (n7- s') E = 0, 
i~I, 2 

(3.1) 

where the quantity E' takes account of the contri­
bution due to the other resonance frequencies of 
the medium. The boundary conditions in. (3.1) can 
be used to estimate the intensity of the radiation 
which emerges from the medium. 

Suppose that at the interface between an iso­
tropic non-gyrotropic medium and a vacuum, a 
plane wave is incident on the medium at an angle 
J-0 < rr/2. Two reflected waves arise, corresponding 
to the two refractive indices nt ( w ) and n2 ( w ) . 
Suppose that the index associated with the incident 
wave is nt ( w ) . From the condition that th~ phases 
must be equal it is easy to show that the following 
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relations obtain between the refracted and reflected 
waves: 

&0 = &~> sin&2 /sin&0 

= ni(w) sin & / n2 (w) sin &0 = ni(w), (3.2) 

where J. is the angle of refraction and J-1 and J-2 

are the angles of reflection. The boundary condi­
tions (3.1) can be used to determine the amplitudes 
of the refracted and reflected waves. If the elec­
tric vector of the incident wave is perpendicular 
to the plane of incidence the amplitude of the re­
fracted wave E is related to the amplitude of the 
incident wave Eo by the expression 

(3.3) 
E 2n1 cos .'t0 (n~- n~) 

~ ~.'t~-~+~~~~-~-~-~~-~ 

If the incident wave. is associated with the index 
n2 ( w ), we interchange n1 and n2 in Eqs. (3.2) 
and (3.3). 

The results obtained above can be used to choose 
the most convenient experimental geometry for 

studying these features of Cerenkov radiation in 
media characterized by spatial dispersion. 

In conclusion the authors wish to express their 
gratitude to V. L. Ginzburg for his interest and for 
a number of valuable discussions. 
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