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The interaction between spin waves and phonons is considered. The time for establishment 
of equilibrium between phonons and spin waves is calculated. 

IN a previous work, *1 a phenomenological method 
was used to obtain the magnetic part of the energy 
spectrum of a ferromagnetic dielectric, and the 
interaction of spin waves with one another was con­
sidered. Besides the spin waves there are in a fer­
romagnetic dielectric, as in any solid body, energy 
branches connected with vibrations of the crystal 
lattice ( phonons). Three of these, the acoustic, 
play a basic part both in thermal properties and 
in kinetic processes. The present work deals with 
the study of the interaction of spin waves with pho­
nons. 

Interaction of elementary excitations (quasi­
particles) with each other leads to the establish­
ment of statistical equilibrium in the body. We 
calculate here the time for establishment of such 
equilibrium. For this purpose the process of es­
tablishment of equilibrium is regarded as a proc­
ess of equalization of the temperatures of the pho­
nons and of the spin waves. Such an approach is 
permissible if the time for establishment of equi­
librium within each of the subsystems ( phonons 
and spin waves) is considerably shorter than the 
time of relaxation between the subsystems; as will 
be shown below, this condition is satisfied over a 
wide temperature range. 

Similar questions have been considered by 
Akhiezer2 from a microscopic point of view. Be­
sides the processes studied by him, processes 
are here considered in which two phonons take 
part. 

1. THE INTERACTION HAMILTONIAN 

In a phenomenological approach to the study of 
interaction between spin waves and phonons, it is 
appropriate to describe the spin waves by the vec­
tor density of magnetic moment, M = M ( r, t), and 

*The notation of the present work coincides with the nota­
tion of reference 1. 
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the phonons by the strain tensor, Uik = 1/2 ( Clui /ClXk 
+ auk /8xi) [ u = u ( r, t) = displacement vector ] . 
The interaction Hamiltonian will then be the sum 
of all those terms, in the expansion of the energy 
of the ferromagnetic in powers of Mi, 8Mi /Clxk, 
and Uik• that have the form* 

These terms include all the invariant combina­
tions that contain the tensor Uik linearly, and the 
vector Mi and its spatial derivatives quadratically. 
The terms quadratic in uik are responsible for the 
two-phonon processes and will be considered below. 
Terms linear in Mi cannot enter, since Mi is a 
pseudovector. 

The first of the terms written corresponds to 
magnetostrictive energy, which in the isotropic 
case (we shall henceforth restrict ourselves to it) 
can be written in the following form: 

lo ~ M 2 divudv + 1 ~ M;MkUikdv. 

The first of the integrals vanishes, since M2 = M~. 
The second contains an anisotropic combination of 
the components of the vector M and consequently 
is of relativistic origin. The value of the constant 
y may be taken from magnetostriction measure­
ments at low temperatures. 

The term quadratic in the derivatives of M 
drops out when the magnetization is uniform and 
therefore does not enter into the ordinary magneto­
strictive effects. The largest among the constants 
A. are those that are connected with (isotropic) 
exchange interaction. 

On the basis of these remarks, we write the in­
teraction Hamiltonian in the following form: 

(1) 

*Summation over repeated indices is understood. 
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where 

(2) 

The energy JCex may be considered the result of 
expansion of the exchange interaction energy 
J O!ik ( BMz/Bxi )( 8Mz/8xk) dv ( cf. reference 1) 
in powers of Uik· Therefore the constants A.1, 2 

are conveniently written (.B1, 2/2)(®cfl.tM0)a2, 

where ,81 2 are dimensionless constants of order 
' unity. 

In the ground state the density of magnetic mo­
ment is uniform and constant and equal to M 0• We 
choose the z axis along the vector M 0• Then near 
the ground state, to terms quadratic in the devia­
tion of the magnetic moment from M 0, we get 

ytms = 2rMo ~ (MxUxz + MyUyz) dv 

(3) 

(4) 

where 

M± = Mx-1- iMy; M; = Mz- M0 • (5) 

We remark that M~ is quadratic in Mx and 
My. 

The first integral in the expression (3) describes 
the connection between elastic and spin waves in a 
ferromagnetic3•4 and is not connected with transi­
tions between stationary states of the system of 
spin waves and phonons. Therefore it is hereafter 
omitted. 

For the study of kinetic processes, the magnetic 
moment density M and the strain tensor Uik are 
to be considered operators. In terms of the second­
quantization operators aA. and a~, the components 
of the moment are expressed as ( cf. reference 1 ):* 

*In formulas (6) we have omitted terms of the third order in 
the operators a,>.._ and a\, since they play no part in the proc­
esses considered below. 

M+ = (2p.M0)'h a*; M- = (2p.M0)'1• £1, M~ = - :ui*a, 

a= v-'/, ~ Q). (t) eik).r ; Q). (t) = Q).e-i•)/lti, (6) 
A 

kA, and EA. are the wave vector and energy of the 
spin wave. 

In the temperature range of interest to us ( T » 
27TJ.LM0 ), we may, in the spectrum, neglect the mag­
netic interaction and limit ourselves to the Bloch 
dispersion law 

(7) 

In the representation based on occupation numbers 
nx of the spin waves, the nonvanishing matrix ele­
ments of the operators aA. and a~ are respectively 
equal to 

(Ill.! U). ill).+ I)== Vn). + I; (ni.; a;. i 11),- I)= vn;.. (8) 

The strain tensor component operators Uik are 
expressed in terms of the creation and annihilation 
operators bA.s and b~s for phonons in the follow­
ing form: 

(9) 
u = V-'1• LJ llt.;2~..ru).sPAs [b ).s (I) c111·1' + &;, (t) e-if),r ]; 

) .. s 

(N1.s b;., /l'hs +I)= V N,., +I, 
(10) 

Here p is the density of matter, PA.s is a unit 
vector of polarization of a sound wave, the index 
s identifies the polarization, and fA, and WA.s 
are the wave vector and frequency of a phonon. 

For longitudinal polarization, 

for transverse polarization, 

cz and ct are the longitudinal and transverse 
sound velocities ( cz > ct). 

(11) 

(11') 

On substituting the expansions (6) and (9) in for­
mulas (3) and (4) and integrating over the volume, 
we get 

(12) 

-+- (p~f:;- -; p~~f"t -- p~J~) a;a,,b."} + complex conjugate, 
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+ ~z (k~h~) UeP ~') J a;. a:J.bvs + complex conjugate . 

Here p± = pX ± ipY, :F = fX ± ifY. The operator 
axal-!bvs describes the process of creation of a 
phonon by a spin wave. To this process corre­
sponds the following law of conservation of mo­
mentum: 

(13) 

(14) 

The operator axa~bvs describes the atlnihilation 
of two spin waves with formation of a phonon. To 
it corresponds the conservation law 

(15) 

Both conservation laws (14) and (15) are obtained 
naturally upon integration over the volume. 

2. GENERATION AND ABSORPTION OF PHONONS 
BY SPIN WAVES 

Since the dispersion law (7) for spin waves coin­
cides with the dispersion law for ordinary free par­
ticles, the generation of phonons by spin waves is 
analogous to the Cerenkov radiation of sound waves 
by particles in motion at supersonic speed. From 
this it follows that the condition for radiation of a 
phonon has the form: for longitudinal phonons 
Vs > cz, for transverse phonons Vs >ct. where 
Vs = 2®ca2k;>jti is the speed of the spin wave. By 
expressing kA. in terms of EA,, we may write the 
radiation condition 

(16) 

where ®0 is the Debye temperature; ®0 = ticz/a 
for longitudinal phonons, and ®0 = tict/a for trans­
verse phonons. From the condition (16) it is clear 
that the generation of a phonon by a spin wave is 
an activation process. 

As follows from formulas (12) and (13), the 
Hamiltonian that describes this process has the 
form 

.v i VT ~ 1 Jve = -- - 7, -- :J.M + -- - + z z 2 2pV ~ y~ {r! o (PJ, f- Pv.fv - PvsfJ 
Af.LVS v::; 

-1- Hca2 [B1 (p' fk + p" fi') ki k" + 2R. kl ki f"p'' ]} a•a b _L c c 
I • 'IS 'J vs 'J A !1. ~~ A l.l. v vs A fl. VS I • • 

On comparing the terms inside the curly brackets 
we find that for T » 1-1Mo the second term is con­
siderably larger than the first, since ®ca2k~k~"' 
E "' T. Therefore 

(17) 

The nonvanishing matrix elements of the Hamilto­
nian JCe correspond to a transition nA_, nJ.L, Nvs 
- nA,- 1, nil + 1, Nvs + 1 and to the reverse 
transition. According to (8) and (10) we have for 
the indicated transitions 

(n~.,niL,Nvs(.ilt',ln),-1, n1,+1, Nvs+1) 

= fv ~ eca2 {~1 (p~J~ + p~J~)k~k~ + 2~2k~k~f~P~,)> 

XV n~. (niL+ 1) (Nvs +1)exp{f(s;. -z ~- f•Wvs} t }· 

Hence the transition probability is 

X n~. (niL+ 1) (Nvs + 1) 0 (s), -- SIL- li<<>vs )-

The 6 -function guarantees the energy conserva­
tion law 

(19) 

We recall that the momentum conservation law for 
the process under study has the form (14). 

We now consider the transfer of energy from 
spin waves to phonons. The energy received by the 
phonon system in unit time is 

Ue = ~ h<•lvs N vs, (20) 
vs 

where N vs is the change in the number of phonons 
in unit time resulting from radiation and absorption 
of sound waves by spin waves. According to (18), 

Here and hereafter, the sum extends over those 
values of the wave vectors that satisfy the momen­
tum conservation law. 

On inserting the value of Nvs into (20), we get 
. "82a41l 
U,= 4~V ~A;{n~.(ni'+1)(Nvs+1) 

).[<VS (22) 

- (n~. + 1) n~J.Nvs} o (s~.- siL -1Lw.,5 ). 



154 M. I. KAGANOV and V. M. TSUKERNIK 

Upon replacement of n1 and N vs by the Bose 
equilibrium distribution, Ue naturally vanishes. 
On deviation of the system from the equilibrium 
state, the return to the equilibrium state will pro­
ceed thus: equilibrium will be established first 
within each subsystem (spin waves and phonons), 
and then- considerably more slowly -between 
the subsystems. The second stage can be described 
as a process of equalization of the temperatures of 
the spin waves and of the phonons. Clearly such a 
view is correct if the time for temperature equali­
zation is much longer than the relaxation time of 
spin waves} As will be clear below, this condition 
is satisfied over a wide temperature range. 

Thus we shall consider that the spin waves and 
the phonons are described by Bose equilibrium dis­
tribution functions with different temperatures, re­
spectively equal to T s = T and to T ph = T- t::.. T. 
Hereafter we shall always consider that t::.. T « T. 

On the basis of these remarks, we get from for­
mula (22) 

n2 4"''' <;/T _, . , '""ca n.· '\1 , e 8 (e, ·- ~:" -- nwvs) 

Ue= 4pVT2 ATi-;:,sAsWvs(c';.T ___ 1)(e'!-''T_'I)(e'h"'vs!T -1) 

(23) 
or 

' ' I ' I 
U, = u. +U e. (24) 

where u~.t is the amount of energy transferred 
to a longitudinal (transverse) phonon in one sec­
ond. u~t is determined by formula (23) with A~ 
replaced by Ai t From expression (21), with ac-

' count taken of the momentum conservation law (14), 
we have: 

At= 2 {~If J~i. COS 6;,v (k; COS fJ;,v- f v) 

(25) 

At= ~d vk;, sin 0;,., (2k;. COS U;,v - f v) (26) 

( (J-71. 11 is the angle between the vectors kA. and f11 ). 

On going over from summation to integration, 
we get after integration over angles 

where 

· t V1i ( T )s u. ~= 6'1 (~n)a pa" e~ AT let (:xt). 

·.t Vt. P 
[;, .c= --IT-(~)" , -~AT let (:xt), 

' -" . pu e~ei 

00 

~ y4dy 
let(:X) = -­

cY-1 
II 

ex {~ 1 (ex~-- y 2) + 2~ 2 [2ax--;- y (y + a))} 2dx 

(ex· - 1) (ex Y __ 1) 

(27) 

(28) 

(29) 

We consider the limitin~ cases of high and low 
temperatures. 

High temperatures ( az, Ol.t « 1). Here 

On substituting in (22) the asymptotic value of the 
integrals, we fipd 

(T --;,> 8Y8c), (31) 

(T ~ 8~/8c). (32) 

On comparison of expressions (31) and (32), we find 
that for T » ®z/®c, always U~ » ut (f3t ~ {32). 
Therefore 

u ~ 2'VIi. Pi+~ (Pl + ~2) 2 (I...'-' AT 
e ~ 60pa8 3 \ 0) ' (T >--> 8Y8c)· (33) 

Low temperatures ( az, Ol.t » 1 ) . In this case 

l,z(:x) = 24 · 31C (5) :x4e-"14 (~1 + ~2 )2 , 

let (:x)= 24 · 31C (5) ~ie-"'1'. 

Hence 

(34) 

Since ® z > ®t ( cf. reference 5 ) , the fundamental 
role in energy transfer at low temperatures is 
played by the process of generation of transverse 
phonons, i.e., 

(T ~ 8~/8c)• (36) 

As was to be expected, the coefficient of heat 
emission for the activation process of radiation 
and absorption of phonons decreases exponentially 
with temperature. 

3. ANNIHILATION OF TWO SPIN WAVES WITH 
FORMATION OF A PHONON, AND DISSOCIA­
TION OF A PHONON INTO TWO SPIN WAVES 

The processes indicated in the section title 
occur by virtue of the magnetostrictive part (12) 
of the Hamiltonian. Because of the relativistic 
origin of the magnetostrictive energy, the proba­
bility of these processes is small. However, as 
will be evident below, the corresponding coeffi-
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cient of heat transfer does not contain an expo­
nential dependence on temperature (at low tem­
peratures). Therefore it becomes necessary to 
make a comparison of the coefficient of heat 
emission resulting from generation and absorption 
of phonons with the corresponding coefficient re­
sulting from the processes to be investigated. 

By use of the Hamiltonian (12) and of a formula 
analogous to formula (20), we find [with the aid of 
the expressions (8) and (10) for the matrix ele­
ments of the operators a A. and bA.] that the en­
ergy given up by the spin waves to the lattice in 
unit time by virtue of the processes under inves­
tigation is equal to 

(37) 

where 

Bs = I p:};fJI . (38) 

As before, we get from (37) and (38) 
. . ,[ . t 

Ua=Ua+Ua, 

where 

(39) 
· t _ y2V1i (1-'-Mo)"(T )4 Ua- :;,-------0 3 8,-8 -8 D.T la (rxt), 

l " pa ' c ' t 

here 

X]o=- J=f ---y ( v'l.y -y>) 
'... 2 a a2 ' 

(40) 

and the quantities az and at are determined by 
equations (29). 

On finding the asymptotic expressions for the 
integral (40) for the cases of high and of low tem­
peratures, we find: 

· ~ _7_ y2V1i (tlM 0)2 e~ + 3 / 28J 
Ua ~ go"• pa' e e2 

c c 

(T ;d.> 87f8c ). 

(41) 
(J ~ 0.25 y•V1i (~-'-Mo)2 5(__!._ + _3 ) (!..._)'/, D.T 

a paB 8 c 8 c EJ1 ze; 8c ' 

(42) 
(T~ 8U8c)· 

By comparison of formulas (33) and (41), it can 
easily be shown that for T » ei/®c the fundamen­
tal role is played by the processes of generation 
and absorption of phonons (i.e., U a « U e). 

For T « ei/®c two cases are possible, as is 
clear from comparison of formulas (36) and (42). 

For 

as for high temperatures, spin-wave annihilation 
processes play no part in the transfer of energy 
to phonons. For 

T ~ 8]!88c ln (8]/p..M08c) 

these processes should be the ones of greatest im­
portance. However, since the whole treatment is 
valid only down to temperatures of order J.LM0, the 
last statement may prove to be incorrect [in case 
J.LMo ~ ®i/8®c ln (®i/J.LMo®c), which usually oc­
curs]. 

Practically, therefore, for all temperatures 
above J.LMo the fundamental role, among single­
phonon processes, is played by the processes of 
generation and absorption of phonons by spin waves. 

4. THE ROLE OF TWO-PHONON PROCESSES 

Two-phonon processes are described by the 
quadratic terms in the expansion of the energy of 
the ferromagnetic in powers of the strain tensor. 
Here, as in the single-phonon processes, there can 
be terms of exchange origin and of relativistic ori­
gin. It can be shown that the relativistic terms are 
small in comparison with the analogous terms in 
the single-phonon processes by virtue of the small­
ness of the parameter M2 / pc2• 

Therefore it is necessary to compare with the 
single-phonon processes only the exchange terms, 
which have the form 

(43) 

where the coefficients L}~rs are in order of mag­
nitude equal to ®ca2/J.LM0• 

On going over to a second-quantization represen­
tation, we get from (38) 

(44) 

The coefficients F are of order unity. They are 
complicated functions of the angles; their precise 
form is not important for the estimates carried 
out below. 

As is clear from equation (44), there are two 
types of process: scattering of a phonon by a spin 
wave (or vice versa) and radiation (or abosrp­
tion) of two phonons by a spin wave. The radiation 
of two phonons, like the radiation of a single phonon, 
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is an activation process. It is less probable (by 
comparison with the radiation of a single phonon), 
as being a higher-order process. On the other 
hand the scattering of a phonon by a spin wave is 
a non-ac.tivation process. Therefore at low tem­
peratures ( T « ®~ /® c• where ®0 is the De bye 
temperature) the energy transferred to phonons 
by spin waves by vittue of this process varies with 
temperature in a moderate fashion, and so, it might 
seem, can play a larger part at low temperatures 
than does the activation process of phonon radia­
tion. A calculation analogous to the preceding one 
gives, apart from a numerical factor, 

(45) 

where 

On comparison of equations (45) and (36), we find 
that two-phonon processes can be important at tern­
peratures below ®tf [52 ln 2 + 16 ln (®d®d] "' 
0.1°K, where our treatment, as we have pointed 
out, does not apply. 

Thus, finally, according to formulas (33) and 
(36), 

(46) 

5. THE TIME FOR ESTABLISHMENT OF EQUI­
LIBRIUM 

By use of the results obtained, we shall calcu­
late the time for establishment of thermal equilib­
rium (the relaxation time) between spin waves 
and phonons. 

The heat balance equation clearly has the form 

C, c!Ts I ot = U; cpbc!7~h/ ()t = - U, (47) 

where Cs and Cph are the specific heats of spin 
waves and of phonons: 

(48) 

( 3/®~ = 1/®~ + 2/®~), artd U is determined by 
formula (46). 

At low temperatures ( T « ®~/®c), the phonon 
specific heat is much smaller than the spin ( Cph 
« Cs ). Therefore the temperature of the spin-wave 
gas may be considered constant. 

Then for the temperature difference fl. T we get 

the equation 
iJ!!.T 

cph7ff =- (l(~T. 

Hence 

6~i VIi. p { ej } 
(l( =c ""paB e3 e2 exp -.48 T . 

c t c 

1 1s~i e~ ( r )2 { e; } 
"sph= --;r;-ecmcjn -e-; exp- t,eJ (T<S8if8c)· 

(49) 
At high temperatures (T » ®i/®c), the tempera­
ture of the phonons must be considered constant. As · 
before we find 

As was indicated in the introduction, the expres­
sions obtained here for the relaxation time must be 
compared with the relaxation time within the spin 
system. For the relaxation time Tss within the 
spin system, there were obtained in reference 1 
the formulas 

1 {(8c/ li) (T f8c) 1 for T .:?> [J.M0 (8c/[J.Mo)'". 
::.;= gM0 (p.2 /a3 8c)(T/Elc)'l2 for T~~[i-Mo(Ac/!LMo)''. 

(51) 

We have omitted in the second formula a log­
arithmic factor unim,portant for our estimate. The 
characteristic temperature for spin-spin relaxation 
J.LMo ( ®c IJ.LMo )317, agrees in order of magnitude with 
the temperature ®~/®c. Therefore the expression 
(49) must be compared with the second formula (51), 
and the expression (48) with the first. The compari­
son shows that both for J.LMo « T « ®~ /®c and for 
®~/®c « T « ®0, ®c, the relaxation time Tss is 
much smaller than the time T sph. This justifies 
the introduction of two temperatures in the treat­
ment of spin-phonon relaxation. 
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