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A theory of relaxation of the magnetic moment of ferrodielectrics is given. It is shown that 
exchange interaction between the spin waves causes first a Bose distribution to be established, 
with given non-equilibrium yalues of the square and projection of the magnetic moment on the 
axis of preferred magnetization. Because of magnetic interaction and interaction due to the 
anisotropy energy, equilibrium values of these quantities are gradually attained. The relaxation 
times are computed. 

l. The kinetic and relaxation phenomena in ferro­
dielectrics are determined by various processes of 
interaction of spin waves with each other and with 
phonons. The strongest interaction"between spin 
waves in the temperature region ®c » e » 
®c (J,tM0 /®c)4/7 (®c is the Curie temperature, J.t 

the Bohr magneton, and M0 the magnetic moment 
of such a region) is the exchange interaction that 
establishes a Bose distribution of the spin waves. 
This distribution, however, does not correspond 
to the equilibrium value of the magnetic moment. 
To the contrary, since the Hamiltonian of the ex­
change interaction commutes with the total mag­
netic moment of the body :m and with its projec­
tion of the axis of the lightest magnetization Wlz, 
the latter quantities can be arbitrary. 

The transition to equilibrium values of these 
quantities, together with the equalization of the spin 
and lattice temperatures, is due to the magnetic 
dipole interaction between the spin waves, to the 
interaction caused by the anisotropy energy, and 
to the interaction between the spin waves and the 
phonons. All these interactions are weak com­
pared with the exchange interaction between the 
spin waves, and the relaxation of the magnetic 
moment and equalization of the temperatures are 
therefore slow compared with the establishment 
of the Bose distribution for spin waves with speci­
fied values of magnetic moment. 

The first to be established is the equilibrium 
value of the absolute magnetic moment. This 
process is caused principally by magnetic dipole 
interaction. The equalization of the spin-wave and 
lattic temperatures and the establishment of the 
equilibrium value of the projection of the magnetic 
moment on the axis of the least magnetization are 
slower. 
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2. The Hamiltonian of interaction of the spin 
waves with each other or with phonons can be rep­
resented in the following form 

where JCe and Jew are the Hamiltonians of the 
exchange and magnetic interactions, :tea is the 
anisotropy energy, and JCp is the Hamiltonian 
that describes the interaction between the spin 
waves and the phonons. 

To find JCe, we start with the expression for 
the exchange energy of a ferromagnet: 1 

where M is the magnetic moment per unit vol­
ume and a is the exchange integral (a= ®ca2/ 

2J,tM0, and a is the lattice constant). Let us put2 

M+ = Mx + iMy = (4p.M 0 )'/'a+ [1- (p./ M0 ) a+aj'l•, (1) 

M- = Mx- iMy = (4tJ-M0).1'[l- (p.J M0) a+al1'a, 
Mz = M0 - 2p.a+a, 

where a+ and a are the spin-wave creation and 
absorption operators, satisfying the commutation 
conditions 

[a (r), a+ (r')] = o (r- r'). 

Expanding the operators a in a Fourier series 

a (r) = v-'l• ~ eik•r ak. a+ (r) = v-'j, ~ e-ik·rat, (1') 
k k 

we obtain the jollowing expression for the exchange­
interaction Hamiltonian 

(2) 
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where 

1:1 (k) = { 1, k = 0 
0, k:f=O 

and at ak are the operators of creation and anni­
hilation of a spin wave of momentum k. These op­
erators satisfy the commutation condition 

[ak, a"tJ = 1:1 (k- k'). 

The number of spin waves with momentum k is 
+ 

nk = akak. 
The operator :ICe is responsible for the scatter­

ing of the spin waves by the spin waves, i.e., for 
transitions of the type nt> n2, n3, n4 - n1 + 1, 
n2-1, n3+1, n4-1. 

The Hamiltonians Jew and JCe are defined by 
the formulas 

(4) 

where {3 is the anisotropy constant [the latter 
expression can be obtained from the anisotropy 
energy ~{3 J ( M~ + M}) dV ]. It is easy to see that 
the operator 3Cw is responsible for the processes 
of the merging of two spin waves into one and for 
the splitting of one spin wave into two, i.e., for 
processes of the type nt> n2, n3 - n1 + 1, n2 -1, 
n3-1 and n1, n2, n3-n1 -1, n2+1, n3+1. The 
Hamiltonian 3Ca, like JCe, is responsible for the 
scattering of the spin waves. 

The energy of the interaction between the spin 
waves and the lattice can be represented in the 
following form3,4 

where Uik is the deformation tensor; 81 and 82 

are constants connected with the exchange integral: 

( {31 and {32 are quantities on the order of unity). 
We have written in JCp only the energy connected 
with the exchange interaction, and did not take into 
account the magnetostriction energy, which necessi­
tates small corrections. 

Introducing the creation and annihilation opera­
tors bts and bfs of a phonon with momentum f 
and polarization s, in accordance with the formula 

-. /T "" eis {b if•r+ [ + -if·r} U = V -\1 .::.,J -~cc=c=c fsC lfsC 
p fs j/ 2wis 

( p is the density of the matter, efs is the vector 
of polarization of a phonon with momentum f; the 
number of phonons with momentum f and polariza­
tion s is Nfs = bfshfs ), and using (1) and (1') we 
obtain the following expression for Jep: 

9? P = iAca2 V 2~ ~ {~1 [ (ers·k) (f.k') + (ers·k') (f.k)] 
p kk'fs 

(k k') ( f) + b t. (k'- k- f) l . + ~2 • e,.. } a~;:ak ts r + comp . conJ. 
J "'fs (5) 

This Hamiltonian 1s responsible for the emission 
and absorption of a phonon by a spin wave, i.e., for 
transitions of the type 

3. The change per unit time in the number of 
spin waves with momentum k, due to the above 
interactions, is determined by the following for­
mulas. 

(6) 

L {nk, Nrs) = Le {nk) + Lw {nk} +La {nk} + Lp {Ilk, Nrs}, 

where Le, Lw, La, and Lp are collision oper­
ators connected with the Hamiltonians :ICe, JCw, 
3Ca, and JCp as follows: 

L1 {nk} = (247tp.28~a4 1 tiM~V2) 

X 2] (k 2 ·k4+k1·ks)(k2.k4+k1·ka+8~p.M0 18d) 

X {(nk, + 1) nk,nk, (nk, + 1)- nk,nk, (nk, + 1) (n1,, + 1)) 

X o'(81 + 83- 82 __:_ 84) /:1 (k1 + ks- k2- k4); (7) 

Lw {nk} = (27t / ti) 2J {A,k,k, [nk,nk, (nk, + 1) 

- (nk, + 1) (nk, + 1) nk,] o {83 + 82- 81) 1:1 (k3 + k2- k1) 

+ A,k,k, [(nk, + 1) nk, (nk, + 1)- Ilk, (nk, + 1) nk,] 

X o (s3 - 82 + 81) 1:1 (k3 - k~- k1) + Ak,k,k, [nk, (nk, + 1) 

X (n", + 1)- (n~<, + 1) nk,nk,) o (s3 - s2 - 8I)I:1(ks- k2- k1)}; 

A,k,k, = (647t2p.3M0 IV) I sin &1 cos & 1 exp icp1 (8) 

+ sin &2 cos &2 exp irp2 j2 ; 

La {nk} = (247t~2(L4 I liV2) ); {(I + nk, + nk,) llk,nk, 

- (I + nk, + nk,) nk,nk,} 

X o (81 + s3 - s2 - 8 4) 1:1 (k1 + k3 - k2 - k4); (9) 

Lp {n~.;, Nrs} = (4r:a48~/ pV) 2J w~1 {~d(ers·k1 ) ( f·k2) 

+ ( e1s'k2)(l•k1)] + ~2 (k1• k2) (e,,f) }2 { (N fsllk,- Ilk, Ilk, 

- ll~;:,- N tsfl!<,) o (s1 - E2 - hWts) 1:1 (k1 - k2 - f) 

+ (n~.;,nk, + nk,Nis +Ilk,- nk,Nt8 ) 

(10) 

By using the expression for the collision oper­
ators it is possible to obtain the mean probabilities 
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of various interactions of spin waves and phonons. 
The mean probability of scattering of a spin 

wave by a spin wave, due to exchange interaction, 
is:4 

(11) 

The mean probability of splitting of a spin wave 
into two and of merging of two spin waves into one3 is 

The probabilities of the remaining processes 
are less than we or ww. In the temperature 
range ®c (J.LM 0 /®c)417 < ® « ®c the inequality 
We » Ww holds, and therefore when @ > 
®c {!.tM0 /®c )4/7 the largest term in n.~ol will be 
Le{nk}. The remainder of L, i.e., L' = Lw+ 
Lp + La, can be considered in this temperature 
region as a small perturbation. 

It is easy to see that the general solution of the 
equation 

has the form 

(13) 

where y and n0 are arbitrary constants. They 
can be connected with the initial values of the 
square of the magnetic moment ID12 and the pro­
jection of the magnetic moment lmz on the axis 
of least magnetization. According to (1), these 
values are 

9R, =~ ~ MzdV = M0V- 21mQ- 2p, ~ n,. 
V k+O 

WF = {~ MdV r = (M0V)2 - 4p.V M 0 ~ nk. 

(14) 

v )<# () 

We note that Wl2 and Wlz commute with the 
Hamiltonian of exchange interaction JCe ( Wlz com­
mutes also with :tea, but m2 does not). 

The time required to establish the Bose distri­
bution (13) is of the following order of magnitude 

We now take into consideration the weak inter­
actions JCa, Jew, and :tep. Then the distribution 
(13), which satisfies the equation Le{nk} = 0, 
will no longer satisfy the equation L { nk, Nfs} = 0. 
Since, however, the mean probability of the ex­
change interaction of the spin waves we is con­
siderably greater than the probabilities of all the 
remaining processes, the distribution (13) with 
slowly varying parameters y, n0, and ®s, can 
satisfy approximately the equation 

(here the phonon temperature ®p also changes 
slowly with time). By finding the form of the func­
tions y(t), n0 (t), ®s(t), and ®p(t) we can, in 
accordance with formulas (14), determine the vari­
ation of 9Jc2 and Wlz with time, and also find the 
equalization time of the spin-wave and the phonon 
temperatures. 

To determine the time derivatives of y, n0, ®s, 
and ®p we insert the distribution (13) into the ex­
pressions 

(15) 

The third equality determines the amount of heat 
transferred to the lattice from the spin system, 
while the last relation is the law of conservation 
of energy. 

The change in y and n0 can be found from the 
first two equations. Since y, being the "chemical 
potential" of the spin waves, is determined by the 
total number of the spin waves, which does not 
change if only the strong interaction JCe is taken 
into account, it is possible to determine y by find­
ing the change in 6 nk. Inserting the expression 

k;<'O 
for the collision operators into (15) and linearizing 
over the quantities y, A® = ®s- ®p, and 11 = 
E0n0 /N ( N is the total number of atoms in the 
body, and the quantity n0 /N is considered small 
but finite when N - oo), we obtain after simple 
transformations: 

M~ + I\r- ~ 1 cp = Byy"( + Byn"~, 
1:'18 + r21 +;,I Cs = BeaM\ "~ = B~~"r,, 

(16) 

where cs and cp are the specific heats of the 
phonons, referred to one atom: 

_ 15C {"/2) (~)';, _ ~r: 2 (~ yl _ 2n' ~ (_1__ _ -~) 
Cs - 32 •;, El ' Cp - 5 El ) - 5 3 o3 -+ 83 

r; c D "'t I 

(®z = tisz/a, ®t =list/a are the Debye tempera­
tures for the longitudinal and transverse sound); 
r 1 and r 2 are defined as 

(16') 

and the quantities Byy, By17, Bee, and B 1717 are 
related to the collision operators by 
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(La { nk} k=o is the value of the collision integral 
La when y = 0 and a value n0 is specified). 

Using formulas (8) and (10) we obtain for the 
coefficients B 

where 

B 4 tL3Mo r e )2 c, + cP K (0. 
n = - 5-~- 1 -e · --c - e 1;- ' 

7t na \ c cs p c 2 

1 1.. ( e )s c, + c p Bee= - -(2 )as -0 -- J1 (:xt) 
" pa 1 c,cP 

"' 00 

Jt (:xt) =c ~i \ -('dy_ \ x- (y + at)Zf4at Jx; 
.l eY -1 J (1 --e-x) (ex -y -1) 
o (y+at )' 

4<7.t 

(17) 

Assuming in (16) that the quantities y, TJ, and 
.6.® vary as exp {-At}, we obtain the following 
value for the relaxation constants: 

. !',Bee+ Bn + {([\Bee- I\.)'+ ·~1'2Be(/3yy} •;,. 
A.1 = 2(r.---l'd ' 

. !',Be0 +8YY -{(ftB0e-Bnf+·1I',B0eB., .. ,}'1'. (18) 
"-2 = 2 (l'2 -- 11) --------

In the temperature range 8c » 8 » Eo ( ~ « 1), 
the expressions for A2 and A3 are greatly simpli­
fied and become 

where 
00 00 

1\ d \ 4+3fxy d -Io-1 . 
X = 12 ~ X ~ (1 + x) (1 + y) (2 + x + y) Y 

0 1/4X 

We present expressions for At in the limiting 
cases of "low" and "high" temperatures: 3•4 

Using (14) to (16) we can show that the time varia­
tion of .6.8, ~Rz, and 9R 2 is determined by the 
following formulas 

where ~U?z and "illP are the equilibrium values of 
~lRz and 9R2 for the given temperature, 

and the integration constants n0, .6.81> and .6.82 

are determined by the initial values of .6.8, ~lRz, 

and ~lJ/ 2 • 
We note that of the three quantities At, A2, and 

A3 the smallest is A3• Therefore, if t » 1/At or 
1/A2, it is necessary to retain in (21) only one term, 
proportional to exp { - A3t } . The values of ~J/ z, 
:l.l/ 2, and .6.8 now become 

9J1z ~' ~))(, -- 2:.1.11 0 ( 1 -- ~) e-~<,t, 9JP = ~lJF + 4tLA1 u Vnu~e-'.t. 

18 == _!!c,_ -~3- -~"- e-1.). 
N AI c s (22) 

Since !;; « 1, ( 9Jlz- ~lnz )/mz is considerably 
greater than ( 91{2 - :JJ1 2 )/~.11 2 • In other words, first 
to be established is the equilibrium of the square of 
the moment at 9J1 2, this is followed by a slow rota­
tion of the magnetic moment towards the axis of 
least magnetization, which in turn establishes the 
equilibrium value of ~U/z. Such a relaxation proc­
ess can be described phenomenologically by the 
well-known Landau-Lifshitz equation.t The time 
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of relaxation of the magnetic moment towards the 
axis of least magnetization is 

"= = 1 /":3 == (16o:j~~) (ha60c/p.4) (0c/8)2 • 

Putting {3 "' 10, ®0 "' 10-13 erg, a "' 2 x 10-8 em, 
and ®/®0 "' 10-1, we get T ,..., 10-5 sec. 

In conclusion, the authors thank Academician 
L. D. Landau and M. I. Kaganov for valuable dis­
cussions. 
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