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A study is made of a system of magnetic moments subject to electric exchange and weak 
magnetic dipole-dipole interactions and situated in an external magnetic field H0 + h (t). 
Equations of motion for the magnetization vector are obtained up to terms of second order 
perturbation theory5 and for weak variable fields h ( t) « H0• The limits of applicability 
of the equations obtained are discussed. 

l. The microscopic theory of the behavior of nu­
clear magnetization in an external magnetic field 
has been developed in the paper by Wangsness and 
Bloch.1 In that paper it was assumed that nuclear 
magnetic moments interact weakly with their mo­
lecular surroundings which are regarded as a heat 
reservoir. 

In the cases when the nuclear spins are I ::::; 1 
the equation of motion in weak variable fields has 
the form: 

dMj di + (iMx + jMy} / T ..l 

+ k (Mz- M 0 ) fT 11 = t [MXH]. (1) 

For values of spin I > 1, Eqs. (1) are valid only 
in sufficiently weak constant fields H0• In subse­
quent papers2•3 Bloch took into account the direct 
and the indirect interactions of the nuclei and has 
investigated strong variable circularly polarized 
fields. The theory developed in references 1 - 3 
in principle allows one to compute the relaxation 
times T 1 and T 11 occurring in (1). 

Bloch's equations have been widely used to de­
scribe the behavior not only of a system of nuclear 
magnetic moments but also of electronic magnetic 
moments in an external field. The phenomenon of 
ferromagnetic resonance in strong radio-frequency 
fields is also often discussed on the basis of the 
system of equations (1).4 

Experimental data on the observation of relaxa­
tion and resonance phenomena in paramagnetic and 
ferromagnetic substances are analyzed on the basis 
of Bloch's equations; in such an analysis the relaxa­
tion times T1 and Tu are obtained. However, the 
computation of these relaxation times is carried out 
on the basis of assumptions which are frequently 
different from those utilized in the derivation of 
equations (1). Therefore a comparison with experi­
ment of the theoretically calculated values of T 1 
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and Tu based on the application of Bloch's equa­
tions is not consistent. 

A more consistent method consists of finding 
the variation of magnetization with time (equation 
of motion) starting with a given form of the Hamil­
tonian, and of finding the coefficients appearing in 
these equations. 

Kubo and Tomita5 have developed a quite general 
and flexible method for determining the line shape 
of magnetic resonance absorption in radio-frequency 
fields. This method is more convenient than the 
method of Wangsness and Bloch for the description 
both of nuclear and of electronic magnetic reso­
nance and relaxation. It was successfully applied 
to the study of line shape in nuclear and electronic 
resonance in a weak constant field (tiw0 « kT).6- 8 

In this paper we obtain with the aid of the method 
of Kubo and Tomita the equation of motion for the 
magnetization vector of a system of magnetic mo­
ments coupled by electric exchange and weak mag­
netic dipole-dipole interactions. The coefficients 
occurring in these equations may be calculated in 
specific cases. 

2. The expression for the components of the 
magnetization vector 

M(t) = Spp(t) M (2) 

is determined by the density operator p ( t) which 
obeys the equation of motion: 

where 

inp (t) =it (t) p (t)- r (t) it (t), 

it (t) =it- M:h (t), M = gp.0 ~ ij, 
I 

(3) 

(4) 

and h ( t) is a variable radio-frequency field which 
is assumed to be weak, h (t) « H0• 

Following Kubo and Tomita5 we write the time­
independent part of the Hamiltonian fe in the form 
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(5) 

in such a way that 

r.1t2. MJ = £.92\. 1t'21 = o. (6) 

In order to do this we assume that JC:! contains, 
in addition to terms which do not depend on the 
spins Ij, other terms that describe electric ex­
change interactions, while the operator 

determines the interaction of the magnetic mo­
ments with the external constant field H0 = H2• 

The operator 

is regarded as a perturbation. 
To solve the equation of motion (3) we set 

p (t) = exp (- iitt J t.) p' (t) exp (i:Jtt I h). 

(7) 

(8) 

(9) 

Then in the new representation we shall have for 
p' (t) 

it.r' = rr' (t), M (t)J h (t), (10) 

where 

M (t) ~~ exp (i!itt It.) M exp (- ifftt It.). (11) 

On integrating ·(10) by the method of successive 
approximations we obtain, up to terms linear in 
h (t ), 

t 
A A 1 I 
p' (I) = p' (- oo) + iii- j rr' (- oo ), M (t')l h (t') dt'. 

(12) 

Further, in the same approximation we obtain 
from (9) 

t 

P (f)= ~o + -Jr ~ [p 0 ,J~ (t'- f)] h (t') dt', (13) 

where 

Po c= exp {(f-it) I kT} (14) 

is the equilibrium density operator in the absence 
of the radio-frequency field h ( t) which is switched 
on at t =- oo, 

We introduce the following notation: 

1~L1 = =t= (Mx ± ui\) IV2, ,'\1o c= Mz, 
h=1 '~' =f (hx ± ihy) I V2, ho = hz. 

(15) 

then 

" " 
where a= 0, ± 1. 

Now by using (13) expression (2) can be written 

in terms of its components 

t 

Mcx (t) = Mocx + ~ ~ -~ Spp0 [Ma (t --t'), M~j h~ (t') dt', 
B -oo (16) 

where 

and where we have taken into account the fact that 

Sp [p~, M13 (t'- f)] M .. = -- Sp Po [Mcx (t- l'), M~]. (17) 

We introduce the tensor relaxation function 

1/kT 

Gcx{l ('t) =Spp0 ~ {{Mcx('t-in cr) Mil 
0 (18) 

+M!l(-rr-ihcr) Mcx} dcr- k~ M0cxM0 [3, 

which, as can be easily seen, satisfies the following 
relations 

(19) 

- dGa{l (")I d't = (i In) Sp Po [Mcx (-c), M13]. (20) 

By noting that at T = t - t' the right-hand side 
of the expression coincides with the integrand in 
(16), we obtain 

(21) 

Thus, to calculate the components of the magnet­
ization Ma (t) it is enough to find the components 
of the tensor G a(3 ( T ) • 

3. To calculate the components of the tensor 
Ga(3 ( T) A we shall write the expression for the op­
erator M a ( t ) occurring in it in the form of the 
following expansion: 

t 

Mcx (f) = .M~ (f) -f- (I I in)~ [M~ (t), Jt' (11)] dl 1 
0 

t t, 

+ (ihf2 ~dt1~dtd[M~(t), :1t'(tdJ..?'t''(t2)L + ... , <22> 
0 0 

where 

Then 

M~ (t) = exp (i.'lt0t I h) M" exp (- i.1t'0t I h), 

:ft' (t) = exp (iit 0 t I h) :it' exp (- ih o tIt.). 

(23) 

(24) 

G"0 (-c)= G~0rl ("=) + G~1d ("=) + G~J (1:) + . . . . (25) 

In the following we shall restrict ourselves to the 
approximation of second order in JC'. 

We obtain for G ~~: 

(26) 
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By utilizing (6), (7), (23), we obtain: 

Now by noting that Sp p0MaMf3 = 0 for a "' - {3, 
we obtain 

where 

Xa = Sp Pol Mal2 sinh ((l.,fiWo I kT) I rxhWo- (29) 

In the case of weak fields nw 0 « kT as a result 
of the isotropic nature of the operator (14) in spin 
space we have 

(30) 

In strong fields, generally speaking, X1 "'X11· 

In the case of isotropic surroundings G~1 = 0. 
This follows from the fact that G~~ contains only 
the first power of Je'. 

For the computat!on of G~h it is convenient to 
write the operator 3e' in the form 

The magnitude of the trace does not depend on 
the choice of the origin of time, since the trace is 
invariant with respect to a unitary transformation 
of an operator which follows the trace sign: 

exp (ifit 0 11T I h) ... exp (- iflt0 11T I f1). 

Therefore 

Spp~ ([[Ma, :ft~ (fl- ih~)], it~· (i2 ·- ih::)] M0) 

= exp (- i (rx + ). + ),' + ~) w011T) 

X Sp p0 ([[Ma,:/t;, (t1- ihcr)], :ft~. (t2- ih~)] /~'l[i), 

from which we obtain 

(1., +}. + }.' + ~ = 0. (38) 

Since expression (31) for :iC' contains spherical 
harmonics, only the terms with A. = -A.' differ 
from zero in averaging at t 1 = t 2 in the case of 
isotropic surroundings. For t1 "'t2 the terms 
with A. = -A.'- give the principal contribution to 
(37). Therefore, in accordance with (38) we may 
-set a = - {3. 

We then have: 
l/kT " .eft' = ~ 2} <I>j/ {jkh, 

), i>k (3 1) G~2d ('t) = - :&2 ~ d~ exp (- irx<•>o') ~ ~ d& ('t- &) exp (if..w0 &) 
0 !. 0 where 

{jk)±2 = 2fi:r:L jk±l• 

{jk}±l = + V2 (fi:r:t fko + fiojk±tl· 

{jk}o = fio fko + 1l2 (1~-H fk-1 + /~-1 /~H); 
<Dfk2 = - V6rr I 5 g2 1.1.~ rji/Y 2, ±2 (&ik• :PJk), 

<I>fk1 =- V6o. I 5 g 2 (J.~rjk3 Y2. ±t (llik, ?ik), 

<D~k = - Vi6~75 g2 (.1.~ rjk3 Y2.o (&ik• 'fik), 

(32) 

(33) 

Yzm is the normalized spherical harmonic, and 

J±l = =f (fx ± ify)(V2, f~ = Iz. (34) 

By utilizing (6), (7) and (24) we obtain: 

.cft'(t-{lia)= ~exp(-i/..ru0 -Ah~>>0 ~):fft;(t- ihcr), 
A (35) 

where 
:ft~ (t-ina) 

= exp (i:it2t / h + :ft2o) .'it; exp (- ifft2t I h- fft2cr). (36) 

Now 

x ([[ M",:ft; Ut -- ihcr)], :i{, ·u"- ih~)l M~) 

+exp((:x + /.. + /.') h<o0o) (37) 

x(M~ r'lt';_, (t2 + ih::), t.eft; U1 + ih~). M"JJ)}. 

XSp Po { exp (- rxhw0cr) [[M",;ft;, (-&-ihcr)], :ft'_~. (- ih~)] ALa 

+ exp (rxhwoo) ALa r:ft~A (& + ihcr),[:it;, (ib),Ma]]} Oa, -r>· 
(39) 

where J. = t 2 - t1. 
We introduce the notation 

1:kT 
1 ·• ' ' 

2Jii ~ do Sp p0 { exp (- rx1Ho0 c;) 
0 

under' the condition faA. ( 0 ) = 1. Then 

" 
~" (-) c= ~ .Q~), ~ ('t- {}) exp (il.<•>o&) f"; (i})d-&. 

A 

The tensor Ga{3 ( T) can now be written in the 
form 

(41) 

(42) 

(43) 

As can be seen from (40) and (42), the function 
1/Ja ( T) has the following properties: 

~" ('t) = ~: (- 't) = f---a(";). (44) 

4. If (43) is taken into account, Eq. (21) found 
above for the magnetization Ma determines its 
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variation with time in weak variable fields. The 
function 1{!0! ( T) can be obtained if the specific 
form of the correlation function fO!i\ ( t) is known. 
The function fO!i\ ( t) falls off rapidly with time. 
In the case that 

(45) 

where T c is the time interval that characterizes 
the function fO!i\ (t ), then we can use for 1/JO! ( T) 

the following asymptotic expression 
00 

~"' (') =-: ~ i1!) ~ exp (ii,w 0 &)f o:i(&) d&, -c > 0. (46) 
0 

The term neglected in the integral (42) is of order 
( gO!i\. Tc )2. 

We can now write 1/JO! ( T) in the form 

(47) 
where 

00 

T~- = ~ D!1 Re ~ exp (ii,r,J0 &) f o:i. (&) d&, (48) 
I. 0 

00 

~ 2 (' (49) :xL\r.J0 = ~ Do:i.Im \ exp (t/,w0 &) {o:i. (&) d&. 
i. 0 

Taking into account the fact that ¢0! ( T) is 
small and the limiting condition G ( oo) = 0 we ob­
tain in accordance with (21) and (43), up to terms 
of second-order perturbation theory: 

00 

Mo: ==Moo:+ X.o: ~ (i:xw0 + ~"' ('-:)) (50) 
0 

X exp (- irx,eu0-r- ~"' (-r)) ha (t- -:) d-:. 

The last expression completely determines the de­
pendence of MO! on the time for a given h(t). 

It is now easy to obtain the differential equation 
that is satisfied by the components of the magnetiza­
tion vector. On differentiating MO! with respect to 
time we obtain after simple transformations 

,iio: + (i:x (tu0 + L\t•J0 ) + I) To:] (Mo:- !Vlo:o) 

= - [i:x (t•J0 -1- L\r.J0) + 1 ITo:] '/.a hx (I). 
(51) 

By going over to the Cartesian coordinate system 
we obtain: 

,iix +(I I Tc) Mx = (1 IT 1.h.l. hx (I)+ "(My H 0 -"(M0 hu (t) 

-"((X._!_ H0 - M 0 ) hy (t), 

M,, +(I IT 1.) Mu = (1 IT l.)x.l. h11 (t) + 1Mo h, (I) 
. (52) 

-"(MxH0 + 1 (;(1. H 0 - M 0 ) hx (1), 

iUz + (1 IT 11) (Mz- Mo) = (1 IT 11 )x 
1

• hz (I), 

where 
(53) 

and T1 = T±t and T11 = T0 are the transverse and 
longitudinal relaxation times. 

Equations (52) differ from the linearized Bloch 
equations (1) by their last terms, and also by the 
terms containing Xl and XII· 

In weak fields, nw0 « kT, as we have pointed 
out earlier, we have Xl = XII = X independent of 
the field H 0• In this case M0 = xH0• 

The quantity y appearing in the equation differs 
from the gyromagnetic ratio for the free magnetic 
moment Yo = gJJ- 0 /n by the correction term (53) 

I= lo + L\uJol Ho, 

where 6.w 0 is determined by (49). 
In the case w0T c « 1 we obtain from (49) 

00 

L\w0 / H 0 = ~DiA ~ krooflA(&)d&. 
I. 0 

(54) 

(55) 

In the case under consideration this correction to 
y is due certainly not to the spin-orbit interac­
tions, which were not taken into account, but to 
dipole-dipole interactions. The magnitude of the 
correction depends in an essential manner on the 
nature of the thermal motion of the magnetic mo­
ments and on the exchange interaction. When 
w0T c » 1 the correction to the gyromagnetic ratio 
can be neglected: 

The condition for the applicability of (52) is the 
inequality S2CJ!Tc « 1. 

In paramagnetic solutions T c is the correlation 
time which is determined by 

(56) 

where a is the kinetic radius of the molecule. If 
we take into accotmt that S2 O!i\ ~ JJ-5 I d3n, where d 
is the average distance between the magnetic mo­
ments, then 

D"' "c ~ ( 47r!J-~ 'I/ 3hkT) (a I d)'l. (57) 

For aqueous solutions of paramagnetic salts at 
room temperatl .. j:es S20!i\Tc ~ (a/d)3 < 1 and rapidly 
decreases upon dilution. 

For ferromagnetic substances at temperatures 
below the Curie temperature we always have 
gCJ!i\Tc « 1. 
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