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A study is made of a system of magnetic moments subject to electric exchange and weak
magnetic dipole-dipole interactions and situated in an external magnetic field Hj + h(t).
Equations of motion for the magnetization vector are obtained up to terms of second order
perturbation theory® and for weak variable fields h(t) < H,. The limits of applicability

of the equations obtained are discussed.

1- The microscopic theory of the behavior of nu-
clear magnetization in an external magnetic field
has been developed in the paper by Wangsness and
Bloch.! In that paper it was assumed that nuclear
magnetic moments interact weakly with their mo-
lecular surroundings which are regarded as a heat
reservoir.

In the cases when the nuclear spins are I =<1
the equation of motion in weak variable fields has
the form:

dM/dt + (iMy + M) /T,
+k(M;— M) /T = [MxH]. (1)

For values of spin I >1, Egs. (1) are valid only
in sufficiently weak constant fields H,. In subse-
quent papersz’a Bloch took into account the direct
and the indirect interactions of the nuclei and has
investigated strong variable circularly polarized
fields. The theory developed in references 1 —3
in principle allows one to compute the relaxation
times T; and T) occurring in (1).

Bloch’s equations have been widely used to de-
scribe the behavior not only of a system of nuclear
magnetic moments but also of electronic magnetic
moments in an external field. The phenomenon of
ferromagnetic resonance in strong radio-frequency
fields is also often discussed on the basis of the
system of equations (1).*

Experimental data on the observation of relaxa-
tion and resonance phenomena in paramagnetic and
ferromagnetic substances are analyzed on the basis
of Bloch’s equations; in such an analysis the relaxa-
tion times T and T) are obtained. However, the
computation of these relaxation times is carried out
on the basis of assumptions which are frequently
different from those utilized in the derivation of
equations (1). Therefore a comparison with experi-
ment of the theoretically calculated values of T
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and T) based on the application of Bloch’s equa-
tions is not consistent.

A more consistent method consists of finding
the variation of magnetization with time (equation
of motion) starting with a given form of the Hamil-
tonian, and of finding the coefficients appearing in
these equations.

Kubo and Tomita® have developed a quite general
and flexible method for determining the line shape
of magnetic resonance absorption in radio-frequency
fields. This method is more convenient than the
method of Wangsness and Bloch for the description
both of nuclear and of electronic magnetic reso-
nance and relaxation. It was successfully applied
to the study of line shape in nuclear and electronic
resonance in a weak constant field (hw, < kT).578

In this paper we obtain with the aid of the method
of Kubo and Tomita the equation of motion for the
magnetization vector of a system of magnetic mo-
ments coupled by electric exchange and weak mag-
netic dipole-dipole interactions. The coefficients
occurring in these equations may be calculated in
specific cases.

2. The expression for the components of the
magnetization vector

M(t) =Spp () M (2)
is determined by the density operator p (t) which
obeys the equation of motion:

inp (£) = 5 (1) 6 (£) — o (1) £ (1), 3)
where
F(t) =% —Meh(t), M= guo X,
7 4)
and h(t) is a variable radio-frequency field which
is assumed to be weak, h(t) <« H,.
Following Kubo and Tomita® we write the time-
independent part of the Hamiltonian 3C in the form
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K=+t H, (5)
in such a way that
[9%’2, M] = [%h 9%2] = 0. (6)

In order to do this we assume that 3¢, contains,
in addition to terms which do not depend on the
spins ij, other terms that describe electric ex-
change interactions, while the operator

= _hmoziizv hwy = gy Hy (7)
i

determines the interaction of the magnetic mo-
ments with the external constant field H, = H,.
The operator
A =g 2 e (e — 3 ({rje) (i) /) ®)
>k
is regarded as a perturbation.
To solve the equation of motion (3) we set

0 (f) = exp(— it | ) o' () exp (iFt  h). 9)

Then in the new representation we shall have for
p'(t)

ihy' =[5 (£), M(®)1h (), (10)

where

M (1) = exp (it | ) Mexp (— it | b). (11)

On integrating (10) by the method of successive
approximations we obtain, up to terms linear in
h(t),

t
i | [ (—oo) M1 (1)t

-—00

(12)

Further, in the same approximation we obtain
from (9)

t

b =0+ | oM —01h@)ar,  (13)
where
po = exp {(F — F) [ kT) (14)

is the equilibrium density operator in the absence
of the radio-frequency field h(t) which is switched
onat t= —oo,

We introduce the following notation:
(Mx + ‘A/‘A/!y) /Vz A}Io = Mz,
hO = h27

Moy =% 4 (15)
hoy=F (bt ih) | V2,
then

Mh(t) =D (— )2 Mah o = D) Mk,
where a =0, 1.
Now by using (13) expression (2) can be written
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in terms of its components

Ma (t) = Mo + 2 g

—on

-5 Sppo [Ma (t —-1), Mp] iy (¢') dt’,
1

where .
Moo = Sp poMa 8y,

and where we have taken into account the fact that
Splpo» Mg (' — £)] Ma = - Spgq [Ma (t — t'), Me]. an

We introduce the tensor relaxation function

1/kT
A 1 .
G“ﬁ (T)=SPPO S ?{Ma('c—lh 0) MB
0 (18)

. 1
+M5 (—’C-—-—lhs) M,z} do— W Moa M()(,,

which, as can be easily seen, satisfies the following
relations

Gap (7) = Gpa (— ),
— dGap (7) [ dv = (i [ 1) Sp go [ Ma (<), Mp].

(19)
(20)

By noting that at 7 =t —t" the right-hand side
of the expression coincides with the integrand in
(16), we obtain

d

Mq (t) — Moa = — %‘;S v Gap (7) hy (t — =) dr.

(21)

Thus, to calculate the components of the magnet-
ization Mg (t) it is enough to find the components
of the tensor Gap (7).

3. To calculate the components of the tensor
Gap (1) we shall write the expression for the op-
erator Mg (t) occurring in it in the form of the
following expansion:

t
Ma (1) = M () + (1 in) { (M08 (), 2 (1)1t

t t

+ @y an \dt il ), F2 01,5 @1+ - (g
where t
MS () = exp (it | ) Moexp(— iot | 1), (23)
F(t) = exp (iFot | B) H exp(— iFHot[B).  (24)
Then
Gag () = Gt () + Gaf (%) + Gad (<) + . (25)

In the following we shall restrict ourselves to the
approximation of second order in €.

We obtain for G ((Z:

L kT
G = 00 = Mo (= — ih3) M
i Z It
§ (26)

M (= — iho) Mab d> —gh My My,
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By utilizing (6), (7), (23), we obtain:
MS (v — iho) = exp (— iowwy T — ahwys) M,. (27)

Now by noting that Sp BOMQM[g =0 for a = -8,
we obtain

G(c?)z — 1)® yoexp(— Sa——J—M%Ba 80,
6= (= 1) Ya exp(— fowy %) B, —g— 7= Moz 80 830 (28)

where
%o = SP oo | M |? sinh (ahw, | kT) | ahw,. (29)

In the case of weak fields Hw; < kT as a result
of the isotropic nature of the operator (14) in spin
space we have

Yaa = Aa=Y = =Y. (30)
In strong fields, generally speaking, X; = X|.
In the case of isotropic surroundings Gf),}_; =0.
This follows from the fact that G(—L contains only
the first power of 3.

For the computatlon of G( ) it is convenient to
write the operator # in the orm

= 2 2 O (ki (31)
where e
(iR} 12 = 2 s,
(kY1 = F V2o Tao + Lo Tis), (32)
(kYo = Lio Teo + s (i Fams 4 [1 T
OR° = —V6r/5g% o778 Yo 52 (Yj i)
O = —V65/5g s rie’ Yo, 11 Yk, 9i8)s (33)

@fy = — V1675 g2 ria’ Voo %k 9ie),
YIm is the normalized spherical harmonic, and
[Aﬂ:?(?xii?y)”/i, [y=1.. (34)
By utilizing (6), (7) and (24) we obtain:
T (t—iho) = Dexp (— ihwy — whoy ) 5 (t — iho),
* (35)

where
o (t — iks)

= exp (iFtat | b+ F25) Forexp (— il | h— F:0).

Now

(36)

AT =t
Gai(7) = ._..9;2, S ds exp (— ixwyz) ), th th.z
0 2w 0

X exp (— ll(y)oil — N (Uu ) SP "U {exp( (1+/~+/\,) h(')05)
X (Il Moy 825 (82— ino)), 3, (1— in3)] H19)
+exp (& + h + 1) hoys) (37)
X (Mg [ %5 (82 + ih2), |3, (42 + ih3), Ma]]))

The magnitude of the trace does not depend on
the choice of the origin of time, since the trace is
invariant with respect to a unitary transformation
of an operator which follows the trace sign:

exp (i AT 1) . . . exp(— iF, AT [ h).
Therefore
Spgo ([[May F1 (1 — ih3)], Hrr (t2 — ih3)] M)
=exp(—i(x+ r4+ N 4 B)wAT)
X Sp o ([[Ma, 73 (1 — iho)], Frr (L, — ih3)) M),

from which we obtain

a+r4+N4+B=0. (38)
Since expression (31) for #' contains spherical
harmonics, only the terms with A = —A’ differ

from zero in averaging at t; =t, in the case of
isotropic surroundings. For t; =t, the terms
with A = —A’ give the principal contribution to
(37). Therefore, in accordance with (38) we may
set a=-0.
We then have:
1{{zT T
G () = — g \ dsexp (— inw,z) ngs (x— 9) exp (ihw, 9)
A0

0

X Sp o {€xp (— 2hwyo) [ Ma, 55 (—S—iho)], F s (— ihs)] M_q

+ exp (2hwy3) M_o [T (3 + iho),[F5 (i13), Mal]} Ba, g,
(39)
where 4 =1ty —
We introduce the notation

ik
271[ \ ds Sp ;0 {exp (— ahwy3)
0

X[ Mo, 775 (— 9 — ih3)], 5 (ih3)] M + exp (athw,s) My
X[ (9 — iha) [T (iha), Mall} = 7, @, [ (9)  (40)
under’ the condition £, (0) = 1. Then

GE (=) = — (— 1)* yaexp (— iawy =) $a () 6a, —5,  (41)

T

ZQ X 9) exp (ihwy ) far (%) d9- (42)

The tensor Gaﬁ (7) can now be written in the
form
Gap (7) = (— 1)* g, exp (— i2wy7) (1 — §a) Oa, —p

° R 43
— i Mz baobr @)

As can be seen from (40) and (42), the function
Yq (7) has the following properties:

$a () = ¢, (— ) = 97, (%) (44)

4. If (43) is taken into account, Eq. (21) found
above for the magnetization My determines its
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variation with time in weak variable fields. The
function @4 (7) can be obtained if the specific
form of the correlation function fy) (t) is known.
The function fg,, (t) falls off rapidly with time.
In the case that

Qal Te << 1 9 (45)

where T is the time interval that characterizes
the function fg) (t), then we can use for ¥ (T7)
the following asymptotic expression

Do () = = D5 exp (0, 9) fur (1) dD, >0, (46)
” F
The term neglected in the integral (42) is of order
(Rarte ).
We can now write ¥q (7) in the form

$o (7) == (1/ Ta) || + iAoy, 47

where -
Ti_ =20 Reg exp (in0y 9) far (9) d9, (48)
(49)

2By = DO, Img exp (1w 9) fa. (9) d9.
~ 0

Taking into account the fact that ¥4 (7) is
small and the limiting condition G () =0 we ob-

tain in accordance with (21) and (43), up to terms
of second-order perturbation theory:
Mo = Mo+ | (20, + u ()

0

X exp (—— iawys — g (7)) Ao ( — =) dr.

(50)

The last expression completely determines the de-
pendence of M, on the time for a given h(t).

It is now easy to obtain the differential equation
that is satisfied by the components of the magnetiza-
tion vector. On differentiating M, with respect to
time we obtain after simple transformations

My =+ [ix (0, + Awy) + 1] Tol (Mo — Mag)
= — i (g -+ Amy) + 1/ Talya by (F).
By going over to the Cartesian coordinate system
we obtain:

Met (1T ) Me= (1T )7 he(t) +xMy Hy — 1My b (1)
1 (o, Ho— My by (2),
My 4+ (1T )My = (1T )z, he () + My b (8)
— XMH 47 (1, Ho— My) s (1),
Mo (1) T ) (Ma—My) = (1/ T ) 7, he (0),

(51)

(52)

where

1H, =0, + Aw,, (53)

and T} =Ty and Ty =T, are the transverse and
longitudinal relaxation times.

Equations (52) differ from the linearized Bloch
equations (1) by their-last terms, and also by the
terms containing x; and yj.
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In weak fields, hwy < kT, as we have pointed
out earlier, we have x| =X| =X independent of
the field Hy. In this case M, = xH,.

The quantity <y appearing in the equation differs
from the gyromagnetic ratio for the free magnetic
moment vy, = gu,/h by the correction term (53)

Y ="Yo+ Awy/H, (54)
where Aw, is determined by (49).
In the case w)Teo < 1 we obtain from (49)
Awy | Hy = 2@5% Mod Fua (9) d9. (55)
2 o

0

In the case under consideration this correction to
v is due certainly not to the spin-orbit interac-
tions, which were not taken into account, but to
dipole-dipole interactions. The magnitude of the
correction depends in an essential manner on the
nature of the thermal motion of the magnetic mo-
ments and on the exchange interaction. When
wyTe » 1 the correction to the gyromagnetic ratio
can be neglected.

The condition for the applicability of (52) is the
inequality QgTc < 1.

In paramagnetic solutions T is the correlation
time which is determined by

2 = (4= /3) a0 [ 1T, (56)

where a is the kinetic radius of the molecule. If
we take into account that Qg ~ p§/d*h, where d
is the average distance between the magnetic mo-
ments, then

Qoo o ~ (4wp2n | 38ET) (a ] d)P. 67)

For aqueous solutions of paramagnetic salts at
room temperatuies Qg)\Te ~ (a/d)® < 1 and rapidly
decreases upon dilution.

For ferromagnetic substances at temperatures
below the Curie temperature we always have
anTc < 1.
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