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The dependence of frequencies in electron spin double resonance on crystal orientation in 
an external static magnetic field is found for U2, Ft and M centers in alkali halide crys
tals. Angular dependence is determined by the structure of the centers; the double-frequency 
resonance method can thus be used for a direct experimental study of the structure of color 
centers in alkali halide crystals. 

1. STUDY OF SHORT-RANGE ORDER BY THE 
DOUBLE-FREQUENCY RESONANCE METHOD 

THE electron spin double-resonance method1•2 fur
nishes the frequencies of spin-nuclear transitions 
resulting from interactions between a localized 
electron and one of the nuclei surrounding the cen
ter where the electron is localized. These frequen
cies depend on the wave function of the localized 
electron and the direction of the external static 
magnetic field H. The dependence on the angle of 
H can be determined without knowing the analytic 
form of the electron wave function. This depend
ence is determined by the structure of the center 
and the symmetry of its neighborhood. The double
frequency resonance method can therefore be used 
to study the structure of different localization cen
ters from their frequency spectra and angular de
pendences. When the wave function 1/J falls off 
rapidly outside of the center the principal contri
bution to the frequency spectrum comes from nu
clei of the first and second coordination spheres 
{i.e., only small frequencies result from interac
tions with the spins of distant nuclei). Therefore 
the frequency spectrum and its dependence on crys
tal orientation in an external magnetic field are 
sensitive to the short-range order of the localiza
tion centers. 

Feher2 investigated the frequency spectrum and 
angular dependence of double resonance at F cen
ters in KCl. His experiments agree with the ac
cepted view as to the nature of F centers and give 
the values of 11/J 12 at the lattice sites which are 
closest to F centers. 3 Feher points out that the 
experiments obtain many other frequencies some 
of which are probably associated with defects other 
than F centers. It is therefore useful to obtain 
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the dependence of double-resonance frequencies in 
spin-nuclear transitions on crystal orientation in 
an external field H when the crystal contains color 
centers other than F centers. This is all the more 
important because there is no direct experimental 
evidence showing the structures of a number of dif
ferent electron localization centers. 

2. SPIN HAMILTONIAN FOR INTERACTION BE
TWEEN A LOCALIZED ELECTRON AND THE 
MAGNETIC MOMENT OF A LATTICE NUCLEUS. 
SIMPLIFICATION OF THE HAMILTONIAN 

We denote by S and Ik the spins of the electron 
and nucleus at the k-th lattice site, by JJ., JJ.k their 
magnetic moments and by Pk the distance from the 
k-th site. The spin Hamiltonian :JCsk for the inter
action between a localized electron and the k-th nu
cleus can be written as follows: 4 

The axes of the Cartesian coordinate system cen
tered at the k-th site are numbered by the sub
scripts p and q. 

The spin Hamiltonian in (1) agrees essentially 
with the usual form for :JCsk as the sum of a 
Fermi expression and a dipole-dipole interaction, 5 

which is mathematically less accurate than (1) be
cause the dipole-dipole term contains the differ
ence between two divergent integrals. However, 
it is convenient in (1) to separate the Fermi term, 
which is proportional to 11/J 12 at the k-th site. 

When spherical coordinates are used for Apqk 
in (2) it is easily shown that 
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41t[J.[l.k 
Apqk =---I ~(Pk = 0) )2 opq 

3Sf k 

'"' ~ 3x x - p2a + _rr_k I ,t, 12 pk qk _ k pq dV 
Sf 'f I , , 

k Pk 

(3) 

where Opq is the Kronecker symbol. Inserting 
Apqk from (3) into (1), we obtain 

p, q 
(4) 

The first expression on the right is the Fermi term 
while the second is the mean value of the dipole
dipole interaction. It follows from (1) and (3) that 

8r; [l.[l.k 

a= 3 Sf k I~ (pk = 0) lz, (5a) 

J.LJJ. ~ 3x x -p 2a D = _k I '" )2 pk qk k pq dV. 
pqk Sf 'f ' ,o 

k ~k 

(5b) 

It is obvious that Dpq = Dqp. From considera
tions of symmetry the spin Hamiltonian (4) can be 
simplified further. Let G~k) be a symmetry oper-

1 
ator satisfy the following requirements: (1) It does 
not affect the spatial position of the electron locali
zation center. (2) It does not move the k-th nucleus 
of the lattice. (3) It interchanges identical crystal 
ions. Then 

(6) 

From (6) we easily obtain the relation between dif
ferent coefficients in (5b) resulting from symmetry: . . 

D -- o<klD · "\1 I. D pqk =; i pqk = ~ Ufsr sri?· 

s, r' (7) 

The coefficients bisr (which are generally also 
dependent on p, q, and k) are determined very 
simply in any specific case. 

We note that the set of operations G~k) com
prises a subgroup of the crystal point symmetry 
group. The fact that the present problem is sub
ject to less than complete crystal symmetry ac
counts for the frequency anisotropy of spin-nuclear 
transitions (the dependence of double-resonance 
frequencies on crystal orientation in an external 
magnetic field H ) . 

It is also evident that when the coordinate axes 
xik• X2k• Xak transform into each other under the 
operations of crystal point symmetry leaving lat
tice defects in their places, the coefficients Dpqk 
will not depend on the subscript k for a group of 
ions that are arranged identically with respect to 
the localization center and have the same symmetry 
elements of G~k). Each ion of this group can be 
transferred to any other site of the group by a 
crystal symmetry operation without effecting the 
spatial arrangement of the lattice defect. Here-

inafter local coordinate systems will always sat
isfy the foregoing conditions. 

3. U2 CENTERS 

There is indirect experimental evidence that the 
U2 absorption band in KCl results from the pres
ence of hydrogen atoms at interstices of the lattice.6 

It was shown in reference 6 that the U2 optical ab
sorption band is accompanied by the paramagnetic 
resonance of hydrogen atoms. The paramagnetic 
resonance line width ( ~ 68 gauss) results from 
the interaction between the electron spin and the 
magnetic moments of the surrounding nuclei. 

We shall now obtain the electron spin double 
resonance frequencies resulting from the interac
tion between the u2-center electron and eight sur
rounding nuclei, assuming that the hydrogen atom 
is at the center of a cube (Fig.1). For each of the 
eight points the symmetry elements of G~k) form 
a group C3v (a three-fold rotation axis and three 
planes of symmetry containing the rotation axis). 
The local coordinate system for ion 1 is chosen 
such that the axes x1k, x2k and Xak are parallel 
to X, Y and Z. The coordinate axes for ion 2 are 
parallel to the directions [ 0 I 0], [ 1 0 0 ] and 
[ 0 0 1 ] . The local coordinate systems for other 
ions in Fig. 1 are then obtained by symmetry op
erations which leave the U2 center fixed but trans
port ion 1 (or 2) together with its local coordinate 
system to equivalent points. In these coordinate 
systems all integrals in (5b) are identical for posi
tive and negative ions, respectively. 

F H 
I I 

' I 
I 

FIG. 1 
I 
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Performing the symmetry operations of G~k) 
in group C3v on the coefficients Dpq• we obtain 

Du = Dzz -= D33 = 0, D1z = Dz:1 = D3t· (8) 

The vanishing of the coefficients Dpp follows from 
the fact that D11 + D22 + D33 = 0. We denote the unit 
axes of the local systems by Ttk• T2k, T3k and the 
coefficients Dpq• p >"' q, by D±, where the upper 
sign refers to positive ions and the lower sign to 
negative ions. The spin Hamiltonian (4) with (8) 
taken into account can then be written as follows: 

:7(;,, =a± (h•S) + D± ~ (le-tnk) (S•-t1k)- (9) 
P-t- q 

We assume at first that a± » n±, so that the 
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selection rules for double-resonance spin-nuclear 
transitions are 6.Ms = 0; 6.M1 = ± 1, where Ms 
and M1 are the spin projections on the field H, 
which is oriented with respect to the crystallo
graphic axes as shown in Fig. 1. To calculate the 
mean value of :K:sk we must know the projections 
of Tpq (p = 1, 2, 3) on the field direction. It is 
evident that 

'=pkH = "pkX sin? cos (J + r:pu sin c;; sin fJ + "pkz cos·.;. (10) 

In (10) TpkX is the projection of Tpk on the X 
axis etc. In order to obtain the correct frequency 
the Zeeman energy gnf3n ( Ik ·H) must be added 
to Je sk· where gn and f3n are the nuclear g -
factor and nuclear magneton, respectively. Since 
the isotropic term in (10) makes the isotropic con
tribution a±/2 to the frequency and the contribu
tion of D±(Ik'Tpk)(S•Tqk) is ~D±TpkHTqkH• we 
obtain the following eight frequencies in the double
resonance spectrum of a U2 center: 

h·ltB c= [!,n~nff + \[2a± + 1/2 (sin~ :psin 28 +sin 2:p (cos 8 +sin f.J)) DOc, 

hv{;6 = gnf3nH + 1/ 2a±+ 1/z (sin2 ? sin 2&- sin 2:p (cos 0 +sin f:l)) D±, 

hv~2 = gn~nH + 1 j 2a± - 1/ 2 (sin2 ;:; sin 2fJ- sin 2rp (cos 'J- sin 0)) D± · 

h·4;4 = gn~nH + 1haj=- 1/ 2 (sin 2 ;:; sin 20 +sin 29 (cos 0- sin rJ)) D± 

(11) 

The subscripts of hv in (11) refer to the numbered 
nuclei in Fig. 1. 

When H lies in the XY plane we have cp = rr/2 
and 

hvfs = hvf:6 ~= gn~nH + 1/ 2a± + 1/ 2D± sin 2fJ, 

hvt2 = h·1~4 = gn~nH + 1ha±- 1/zD± sin 2rJ. 

In this case only four frequencies are obtained. 

(12) 

We shall now drop the assumption that a± » u±. 
As previously, the electron spin is oriented in the 
direction of H, so that Ms = ~ and the selection 
rule is 6.Ms = 0. 

Let Jesk be the spin Hamiltonian averaged over 
the electron spin wave functions. From (9), with 
gnf3n (Ik ·H) taken into account, we then obtain 

.'lCsk=gnpn(h•H)+ 1/2a±!kii+ 1 /2D±~ ~ hx'=pkX'=qkH· 
p,q x.v.z 
pofoq (13) 

It is convenient to rewrite (13) by introducing the 
projection lkn of the spin of the k-th nucleus on 
the "quantization axis." 7 If Mn is the quantum 
number of this projection of the spin operator the 
selection rule is 6.Mn = ± 1. It follows from (13) 
that 

:7-tsk c~ [(111Jk +gn,BncxiH)2 + (m2k + gnpnrx2H)2 

+ (m3k + gnpn'Y'aH)2('! kn· 

(14) 

Here O!t. a 2, a 3 are the projections of H/H on 
the X, Y, and Z axes, 

and m 2k and m 3k 
replaced by TpkY 
O!t by 0!2 and 0!3. 

obtained from (14): 

are given by (15) with TpkX 
and TpkZ· respectively, and 
The frequencies are easily 

+ (mak + gnf3na:3H)2('. 
(16) 

It can be shown that when a± » u± (16) becomes 
Eq. (11) as an expression for the frequencies. 

The coefficients Dpq (the dipole-dipole inter
action tensor) can most conveniently be written in 
the principal coordinate system where Dpq is di
agonal. In the present case the symmetry group 
C3v determines these coordinates, the x3k axis 
being the three-fold rotation axis while the other 
two axes have any mutually perpendicular direc
tions in a plane perpendicular to the C3 axis. Dpq 
now has only the diagonal components - D±, - D±, 
and 2D±. 

4. Ft CENTERS 

An Fi center is a system consisting of two 
negative vacancies and an electron in an ionic crys
tal.8 The electron 1/J cloud can either be distrib
uted symmetrically with respect to the two vacan
cies or be concentrated to a large degree around 
only one vacancy, giving what we shall call the 
symmetrical and asymmetrical Fl -center models, 
respectively. The second model possesses greater 
probability but both models are used in the litera
ture.9,10,11 

The angular dependences of a number of double
resonance frequencies will differ in the symmetri
cal and asymmetrical models. We shall determine 
the double-resonance frequency spectrum by con
sidering only the interaction of the electron with 
the nearest neighbors of the Fl center (Fig. 2). 
Table I is a list of the symmetry elements of afkl 
for each of seven groups of "nearest neighbor" 
ions which are located identically with respect to 
the Fl center. The spin Hamiltonian for ions of 
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FIG. 2. Immediate neighborhood 
of an Ft center. Ions located one 
row above those shown in the figure 
are denoted by primes (3'a, a', etc.); 
those located one row below by dou
ble primes (3"a, a" etc.). The near
est neighbors include ions which 
are not farther distant than -J2R 
from a (upper circle) or b (lower 
circle). 

groups I and VI will differ in the symmetrical and 
asymmetrical cases since the symmetry groups of 
the G~) elements differ; frequencies resulting 

1 . 
from interactions with ions of group I will be high-
est because these ions are closest to the vacant 
lattice sites a and b simultaneously. Moreover, 
in the asymmetrical case, the plane cr" is not a 
plane of symmetry because the vacancies a and 
b are not equivalent in this instance. Therefore 
the coefficients in the spin Hamiltonian for ions 
of a single group are not equal when these ions 
have specularly symmetrical positions with re
spect to a". In the symmetrical case the coeffi
cients of the spin Hamiltonian for all ions of a 
given group are identical. Compared with the 
asymmetrical case there are now only one half 
as many frequencies for groups of ions which are 
not in the a" plane. For the sake of simplicity 
we shall not supply the coefficients a and Dpq 
with additional indices but shall keep in mind the 
preceding disaussion and the fact that the coeffi
cients differ for ions of different groups. 

Local coordinate systems are naturally selected 
so that the x1k axis is parallel to the a-b direc
tion, the· x2k axis is perpendicular to this direction 
and the x3k axis is perpendicular to the plane of 
the Ft center (the principal axes of Dpq can be 
given without knowing actual magnitudes only for 
ions of group I in the symmetrical model and for 
ions of group V; the axes are those already men
tioned). 

Table II gives the directions of Tpk for some 
ions. Directions for other local coordinate systems 
are obtained by the procedure described in Sec. 2. 

In the symmetrical model the symmetry group of 

TABLE II 

Local ortho- Ft center in Fi center in Ft center in 
gonal unit (00 1) plane (010) plane (100) plane 
axes for ions 

1,3a,a', 5a, 7a, 
a -b I Along a-b ~Along 1',3'a a-b I Along 

[110] [l10] [101] [ion [011] [01 iJ 

I .. , 
I 

110 110 101 Tot 011 011 ... 110 Ho 101 Tor 01T oii 
"<s 001 001 010 010 100 100 

TABLE I. Symmetry elements of Q~) 
1 

Symmetrical Asymmetrical 
Ion group model model 

I: Ions 1, 2 
II ' c. a, a a 

II: Ions 3a, b; 4a, b a a 
III: Ions a' , b' , a •, b" I 

a a 
IV: Ions Sa, b; 6a, b a a 
V: Ions 7a, b a; a', c; a, a', c; 

VI: Ions 1', 2', 1", 2" II a 
VII: Ions 3'a, b; 3"a, b 

4'a, b; 4" a, b 

a- plane of Ft center; a'- plane perpendicular to a and 
containing a and b; a"- plane perpendicular to a and con
taining ions 1 and 2 (Fig. 2); C2 - a- b axis; C~ - axis 
through ions 1 and 2. 

ape> for grou~ I ions is C2v· Therefore Dpqk = 0 
when p >" q: 

.9t{k = a (h·S) + Du (h·~,k) (S.-c,k) + D22 (lk"~2k) (S •t2k) 

+ Daa(lk·~ak) (S•'tak) =(a -JJ 11 - D j_) (lk·S) (17) 

+ (2D 11 + D j_) (lk· ~1k) (S·~,k) + (2D j_ + D 11) (lk· ~2k) (S ·~2k). 

In deriving (17) we used the fact that the trace of 
Dpq is 0 and employed the notation 

D11 = D 11 ; D22 = D j_. 

In the asymmetrical model the symmetry group for 
the same ions is Cs, so that only the coefficients 
Dta and D23 vanish (the Xak axis being perpen
dicular to the Cs plane ) . Consequently, in this 
case, 

.9t!k = (a-D li - D j_) (h· S) + (2D il + D j_) (lk· ~,k) (S -~,k) 

+ (2D j_ + D 11) (fk.~2k) (S·~2k) 
(18) 

The spin Hamiltonian of ion groups II and IV in 
both Ft -center models is also given by (18) (see 
Table I). For ions of Group III we have the follow
ing spin Hamiltonian: 

(19) 

This equation does not contain D23 and D21 be
cause the x2k axis is perpendicular to the sym
metry plane a'. 

For ions of group V the symmetry elements of 
Gi(k) form the group C2v, and the corresponding 
spin Hamiltonian is given by (17). In the symmet
rical Ft center group VI ions possess a symmetry 
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plane a"; consequently D12 and D13 vanish, so 
that 

.'lt';l = (a-D 11 - D 1_) (lk· S) + (2D 11 + D .l) (lk • ~lk) (S·~!k) 

+ (2D .l + D::) (lk ·~2k) (S·~2k) 

+ D23 [(h·~2k) (S·~ak) + (h ·~ak) (S·~2k)]. (20) 

In the asymmetrical case, however, symmetry ele
ments of G9<-) are absent, so that 

1 

:7tdk1 = (a-D 11 - D j_) (h•S) + (2D 11 + D j_) (lk • ~Jk) (S· t1k) 

+ (2D j_ + D u) (h • ~2k) (S·~2k) + ~ Dpq (h • ~pk) (S·~qk). 
P+ q (21) 

Group VII ions have the same spin Hamiltonian. 
We shall now determine the frequencies for 

double-resonance spin-nuclear transitions. Let 
the static magnetic field H lie in the (001) plane 
forming an angle (} with the [ 1 0 0 ] direction. 
The isotropic' part of the spin Hamiltonian is usu
ally considerably larger than the anisotropic 
part, 2•3•7 so that for simplicity we shall assume 
a» Dpq· Therefore, if as previously Ms and M1 
are the quantum numbers of the spin projections in 
the H direction, the selection rules for spin-nu
clear transitions will be ~S = 0 and .C..M1 = ± 1. 
The frequencies are easily computed without as
sumptions regarding the orientation of H and the 
magnitudes of a and Dpq• as was shown for U2 

centers. 
To determine the frequencies we must know the 

projections of the local axes on H. If the Ft cen
ter lies in the ( 0 0 1 ) plane and is oriented along 
[ 11 0 ) the projections of the unit axes in Table II 
are given by 

-:111 = (sin fJ +cos 0) I V2; 
-:2u == (sin a- cos&) 1 V2; -=au c= o. (22) 

If the Ft center lies along [I 1 0 ] it follows from 
Table II that 

(23) 

The primed axes in (23) refer to the case in which 
the Ft center is directed along [I 1 0 ] . For local 
coordinate axes not given in the table projections 
on H can differ from (22) in sign. If the Ft cen
ter lies in the ( 1 0 0) plane the projections are 

"1kH =±sin fJIV2; 
"2kH = ± sin 0 I V2; "akH = ± cos 0. (24) 

The combination of signs in (24) depends on the 
number k of the ion. Finally, for an Ft center 
in the ( 0 1 0) plane the result differs from (24) by 
the interchange of sin (} and cos (}. The frequen
cies are determined in the same way as in the pre
ceding section. 

When Ft centers lie in the ( 0 0 1) plane spin
nuclear transitions for ions of the first group in 
the symmetrical case are represented by 

1( Du+D.l) Dii-D_l_. 6 
hv = gn ~n H + 2 a+ 2 + 4 Stn 2 ; 

D D D -D (25) 
hv'-=gn~nH++(a+ 11 ~ j_)- 11 4 j_sin2fJ. 

For ions of the second group in the symmetrical 
case we have 

1 ( Dll + D I \ hv± = gn ~n H + 2 a+ 2 --) 

b 11 -Dj_ _ 1 2o. + 4 sm 26 =F 2 D~2 cos u, 

, . 1 ( D II + D j_ ) h•1 "' = gn ~n H + 2 _a+ 2 · 

(26) 

Dll -Dj_ 1 
4 sin 26 ± 2 D12 cos 2~. 

In (25) and (26) hv and ·hv' refer to two mutually 
perpendicular orientations of Ft centers in the 
( 0 0 1 ) plane. 

For ions of groups III, V and VI. spin-nuclear 
transition frequencies are given by (25), and for 
groups IV and VII by (26). 

In the symmetrical case for Ft centers in the 
( 0 0 1 ) plane there are the single frequencies hv 
and hv' for groups I, III, V and VI, and pairs of 
frequencies for groups II, IV and VII. 

For Ft centers in the ( 1 0 0) plane in the sym
metrical case spin-nuclear transition frequencies 
resulting from an interaction between the spin of 
a localized electron and the magnetic moment of 
the k-th nucleus are given by the following equa
tions: 

For groups I and V: 

(27) 

+ ~- 'D 'I -+- D 1.) sin2 (J. ' 4 \ I ' ' 

For groups II and IV: 

1 
hv:s: = g B If -L - (a - D 11 --- D L) n 1 n i 2 . 

(28) 
:1 (1 D ± 2 D ) . " '· +- 4 ')II + 1. 3 12 SID" v. 

For group III: 

1 hv:l: - n· 3 H -1- ·-(a- D 11 - D' ) - Sfll ft I 2 ...L 

_j_ ~ (D" + D L) sin2 (J ± D13~ sin 26. 
' 'f ,, - 2 y 2 

(29) 

For group VI: 

h'l± - a r~ f.! -L .~ (a- D 1 - Dj_) 
- 0 nt 11 1 2 i 

+ {- (D 11 + D j_) sin2 fi ± 2~~ sin 2fJ. 
(30) 
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For group VII: 

h·1± c= a" 311 H +~(a-D, - D..L) 
IS ' 2 , ·' 

:!__ (D _j_ D . _3_ D \ . 2" -t- Dt3 + D, . 2f. -f-- '·. 11, ..LT., 1.,!Sln v~ ,- -S!n J, 
'i\ ""; 211 2 

h·1± = g [-l H _[_ ~(a-D , - D..L) l fl n I 2 II 

(31) 

I 3 (D ' D 2 D ) . 0 u + Dt3 - D,3 
T 4 II -~- ..l - 3- 12 Sin" v - 2 V'z sin 20. 

If the Ft center lies in the ( 0 1 0 ) plane the 
results are the same as in the ( 1 0 0) plane with 
sin (} in (27) to (31) replaced by cos (}. 

Let us now consider the results for the asym
metrical Ft -center model. For ions of groups I 
and VI and Ft centers in the ( 0 0 1 ) plane we have 

, ± _ _ . _, _:!_ ( D ,1 + D ..l ) h 1 -· g" ~" H r 2 a + 2 

+ D II - D ..l sin 25 ± _1_ D cos 2fr 
4 2 12 ' 

hv'± = gn~n H + ± (a+ D 11 
: D ..l) 

D11-D, 1 
4 sin 20 ± 2 D12 cos 2fJ. (32) 

For group I and Ft centers in the ( 1 0 0) plane 
we have 

hv± = gn~nH ++(a- D11- D..L) 

+{(D 11 +D..L± fD12)sin2 6, (33) 

and for group VI the frequencies are given by (31). 
For the remaining ion groups the angular de

pendences of the frequencies are the same as for 
the corresponding groups in the symmetrical case. 

In the asymmetrical model the frequencies for 
Ft centers in the ( 0 1 0) plane are given by the 
symmetrical model in the ( 1 0 0) plane with sin (} 
replaced by cos e. 

Each ion group in the asymmetrical case has 
twice as many different frequencies as the same 
groups in the symmetrical case. 

It is evident from the foregoing that Ft centers 
lying in mutually perpendicular directions in the 
( 0 0 1) plane are represented by different angular 
dependences of the frequencies, whereas for Ft 
centers in the other two planes the frequency spec
trum is independent of the Ft -center orientation 
in the plane. If the Ft center lies in the ( 0 0 1) 
plane the weight of each frequency for ion groups I, 
II, IV and Vis one-half that of the corresponding 
frequency when the Ft center lies in the ( 0 1 0 ) or 
( 1 0 0) plane and is equal to N/6 and N/3 for the 
asymmetrical and symmetrical model, respectively 
( N is the number of Ft centers in the crystal). 
For other frequencies the weight is independent of 
the plane in which the Ft center is located and is 
twice as large as the values just given. 

We may now inquire about the difference between 
the angular dependence of the double-resonance fre
quency for an F center and that for an Ft center 
which is regarded as an F center that is polarized 
by a neighboring negative vacancy (the asymmetri
cal model). It is simplest to compare the two fre
quencies in the local coordinate system that was 
used for the nuclei surrounding the F center. 3 

Denoting the coefficient of the dipole-dipole inter
action in this system by Dp' q', when for the posi
tive ions nearest to the vacancy the primed axes 
are along the principal crystallographic axes and 
the x3 axis passes through the vacancy, for k = 1, 
for example, we obtain 

+-} (D3•3·- D2•2•) sin2 0 + }D3•2• sin 2fJ. 
(34) 

For . F centers D3,2, = 0, and we obtain the al
ready known double-resonance frequency for this 
case2•3 (in reference 3 a+ D2,2, =A, D3'3'- D2'2' 
= BR2 ). 

The angular dependences of other frequencies 
for F centers in the asymmetrical model can be 
determined in the local coordinate systems of the 
centers. However, without computing a and Dpq 
it is impossible to determine theoretically whether 
experiment can distinguish F -center and asymmet
rical Ft -center frequencies (in (25) the difference 
in the angular dependence results from the term 
~D3, 2, sin 2(}). For an asymmetrical Ft center 
the second vacancy has little effect on the 1/J -cloud 
distribution of the F center, so that it is difficult 
to separate the frequencies. It is still an open ques
tion which of the frequencies in (25) to (33) can be 
resolved experimentally and how well this can be 
done. 

5. M CENTERS 

An M center is pictured as being formed by an 
electron localized near three vacancies resulting 
from two missing anions and one missing cation 
(Fig. 3). 8•12 •13 As for Ft centers, we have both a 
symmetrical and an asymmetrical model for M 
centers. In the symmetrical model the 1/J cloud 
of the localized electron is distributed symmetric
ally with respect to the anion vacancies a and 
b, so that vacancies a and b are equivalent. In 
the more probable asymmetrical case the 1/J 

cloud is concentrated to a greater extent around 
one of the anion vacancies. 

Table III gives the symmetry elements of G~k) 
for nearest-neighbor ions. A knowledge of G~k) 1 

1 
enables us to write the spin Hamiltonian JC sk at 
once. For ions of the first group in both M -cen
ter models 
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,n;k ==(a- D1- D2) (lk·S) + (201 + D2 ) (Ik • 'C1k) (S • "=1k) 

+ (2D2 + D1) (Ik · 'C2k) (S • 'C2k) 

+ D12 [(lk·'C1k) (S ·'C2k) + (h·'C2k) (S ·'C1k)]. (35) 

For group II in the symmetrical model D11 == D22 , 
so that 

,n;l =(a- 2D1) (h·S) + 301 [(lk·'C1k) (S·'C1k) + (h·'C2k) (S·t2k)] 

+ 012 [(lk·'C1k) (S •t2k) + (lk·'C2k) (S·'C1k)]. (36) 

In this case the principal axes of the tensor Dpq 
are along C2 and two mutually perpendicular di
rections in a plane perpendicular to C2. The prin
cipal values of the tensor are D1- D12 , D1 + D12 
and - 2D1. In the asymmetrical model the spin 
Hamiltonian for these ions is given by (36). 

For group III in the symmetrical case we have 
D13 = D23 , and D11 = D22 ; otherwise we have (21). 
The asymmetrical model has the same spin Hamil
tonian with different coefficients. Finally, group 
IV does not possess symmetry elements that sim
plify the Hamiltonian, so that JC~k is given by (21). 

The coefficients a and Dpq are identical for 
ions that are mirror reflections of each other in 
the a plane. Moreover, in the symmetrical model 
there are identical coefficients for ions ( ka and kb) 
that are located symmetrically with respect to the 
a' plane, while all other ion groups have different 
coefficients. However, we shall not add additional 
subscripts to a and Dpq. 

In calculating frequencies it must be remembered 
that there are four orientations of an M center in a 
given plane, which is thus divided into four quadrants 
by the sides of the M center. 

Let the field H lie in the ( 0 0 1 ) plane and make 
an angle 0 with the [ 1 0 0] direction. As previously, 
we shall assume that a » Dpq· The projections of 
unit local axes (Fig. 3) on H for M centers with 
~ifferent orientations in different planes will be 0, 
±cos e or ±sin e. 

Spin-nuclear transition frequencies in the sym
metrical model for an M center in the ( 0 0 1 ) 

TABLE III. Symmetry elements of G!k) 
l 

Ion group 

1: Ions 1-6a, b 
II: Ions 1, 3, 7 

III: Ionsa',a", 1', 1", 
3', 3", 7", 7" 

IV: Ions on both sides 
of group I ions. 

Symmetrical 
model 

a 
a, a', c2 , 

a 

Asymmetrical 
model 

a 
a 

a- plane of M center; a'- diagonal plane; C2 - intersec
tion of these planes 

plane are as follows: 
For ions of groups I and IV: 

' 1 (0 0 ) ·2 r + 1 D -. 2f · : 2 1- 2 co" J ~ T 12 sm 1, 

(37) 

h•1: = g11 ~11H + ~ (a + OJ 

+ ~ (01 :- 0 2 ) sin2 f; ± ~- 0 12 sin 2!1. 

For groups II and III: 

h· ± - (J H L _!_ ( ' 0 ) -+- 1 D ' 21 1 --ffnt'n , 2 a, 1 ~--:_r 12sm .J. (38) 

For M centers in the ( 1 0 0 ) plane in the sym
metrical model the frequencies are: 

For group I: 

h. - p H -L ~1_ ( 0 ) - 2D, + D, 2 6. lu ~ ffn?n ' 2 a+ 1 ~2- cos , 

h o H , 1 ( . 0 ) 2D, + D, 2 f. 
'IIi~~ gn?n IT a+ 2 - 2 cos J, 

For group II: 

h. __ 'J H . 1 ( , D ) 3 0 2 r . I-·· gnf'n --T- 2 aT 1 -2 1 COS !, 

For group III: 

h± o= g11 '(> 11 H + +(a + 01) 

3D 2' ± 1 0 . 2f - T 1 cos J 2 13 Sin 1; 

For group IV: 

(39) 

(40) 

(41) 

h•1,~ = g 11 p11 H + +(a -j 0 1)- ZD, t D, cos2 (J ± {Opsin 2fJ; 

(42) 

h ± B H . 1 ( D ) 2D, + D, ., r + 1 0 . 2f vb = gn, n ·\- 2 a+ 2 - 2 cos- J ~ 2 2:1 sm J. 

In the asymmetrical model the number of differ
ent frequencies for each group is double that in the 
symmetrical model. 

For groups I and IV of an M center in the ( 0 0 1) 
plane the angular dependences are the same as in the 
symmetrical model [ Eq. (38) ]. For groups II and III 

+ - + r 

7 .ib Jb 4b 
- $---0--0--0 + 

I o__ g , 
Hal$ ~;.··-:_:• (tJ.lb -

1 I J I 

-Ja ~ /t: 0 (~JZb + 

+ 0--<B--0·41 
4a .Ja za 

- + - + - + b 
a 

FIG. 3. a) Nearest neighbors of an M center, which in
clude ions in two parallel planes above and below those 
shown in the figure. The notation is the same as in Fig. 2. 

b) Local coordinate systems. The Zk axis is perpendic
ular to the plane of the M center and is always directed away 
from it. (As for primed ions, the zk axis in the figure is al
ways along one of the three directions [0 0 1], [0 1 0] or [100]. 
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0 b 

.~ FIG. 4. The 'I' cloud is a,',,,·, 21! Zb 
, largely concentrated at a 

• !/ ', • on the left and at b' on the 
' ', ' ' za• ' '-m' 

right. 
Za• .. ,0 

the frequencies are the same as hv~ of (38) in the 
symmetrical model. 

For M centers in the ( 10 0) plane in the asym
metrical model the frequencies for group I are 

h•1" = gn~nH + 1/2 (a+ D1)- 1!2 (2D1 + D2 ) cos2 fJ; 
h·1~ = gnpn H + 1/2 (a+ D2)- 1h (2D2 + D1 ) cos2 1j; 

(43) 
h~b = gn~nH + 1/2 (a'+ D~)- 1/ 2 (2D~ + D~) cos2 v; 
hv~ == gnpn H + 1/2 (a'+ D~)- 1/2 (2D~ + D~) cos2 u. 
For group IV we have 

ZEVIN 

fi•4J 0 ---.i 

a 

I 

i I . " 
I I fJHJ' I I . ~ 

'io' ~6 "'ra "'r6' 

I B=-1.7' 
b • ll 

"'ro'" 11.fb "'ra' "'rb' 

FIG. 5. a) The pair of nuclei ka. and kb in the symmetrical 
model result in two frequencies which coincide at 0 = 45°. 

b) In the asymmetrical model the same ions give four fre
quencies, two of which are smaller than for the symmetrical 
case. The weight of each frequency is one half that in the sym
symmetrical model. 

h~t = g,p, H + 1/2 (a+ D1)- 1/z (2Dt + Dz) cos2 fJ ± 1/2 D13 sin 2fJ; 

h·1~± = g,pn H + 1/ 2 (a+ D2)- 1/2 (2D2 + D1) cos2 fi ± 1/ 2 D23 sin 2fJ; 
(44) 

h[; == g,pn H + 1/2 (a'+ D~) - 1/2 (2D~ + D~) cos2 & ± 1h D~3 sin2FJ; 

h~~± = g,[~n H + 1/ 2 (a'+ D;)- 1 / 2 (2D; + D~) cos2 6 ± 1/2 D;3 sin26. 

For group II the frequencies are given by hva 
and hv~ of (43) and for group III by hv~ and hv~± 
of (44). 

For an M center in the ( 0 1 0) plane in both 
the symmetrical and asymmetrical models frequen
cies are given by the preceding expressions for the 
( 1 0 0) plane with cos 0 replaced by sin 0. We 
must expect large differences in the frequencies 
for ions of a single group even in the symmetrical 
model because of considerably different positions 
of ions in the group with respect to the M center. 

We can make the following comments regarding 
the foregoing angular dependences. When an M 
center is in the ( 0 0 1) plane the angular depend
ences for ions ka and kb (Fig. 3) differ; also, M 
centers with sides along [ 0 0 1 ) , [ 0 1 0 ) and 
[ 0 0 I), [ 0 I 0 ) give frequencies different from 
the corresponding frequencies due to the two other 
M -center orientations in this plane (the sign of 
D12 is different). In the asymmetrical model each 
frequency is split into two. Thus ions 2a, 2a', 2b, 
and 2b' (Fig. 4) give four frequencies and ions 
1 o and 1 o' give two. (In our local coordinates 
Dpq for 2a and 2b' coincide, and for ions 1 o 
and 1 o' D11 = Dh; D22 = D11). This is illustrated 
in Fig. 5. 

When an M center lies in the ( 1 0 0 ) or ( 0 1 0 ) 
plane all four orientations in the symmetrical model 
give identical sets of frequencies, while in the asym
metrical model two pairs of orientations give differ
ent frequencies. However, the M centers shown in 
Fig. 4 give identical frequencies in this case. 

We are deeply grateful toM. F. DeTgen for di
recting this work. 
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