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It is shown that the determination of the isotropic oscillator group by means of infinitesimal 
operators and generating elements, given earlier by the author, and the determination by 
means of canonical transformations, given by Baker, are equivalent. The explicit form of 
the unitary operators of the group is considered and their relation to the Green's function 
for the oscillator is demonstrated. 

WE consider an n-dimensional isotropic oscilla­
tor and we choose the system of units in such a way 
that the frequency, Planck's constant, and the mass 
are all equal to unity. Then the energy operator 
for the system has the form 

(1) 

while the energy levels of the sytem 

Em =m+n/2 (m=O, 1, 2, ... ) (2) 

are degenerate, with this degeneracy not being ac­
counted for solely by the spherical symmetry of 
the system. 

The symmetry group of the isotropic oscillator 
which explains the additional degeneracy of the en­
ergy levels and which is closely connected with the 
symmetry between the coordinates and momenta of 
the system was originally investigated by the au­
thor.1•2 The group of unitary operators commuting 
with the Hamiltonian was determined by means of 
generating operators (rotations and one-dimen­
sional Fourier transformations), all possible prod­
ucts of which from the group. Moreover, the infini­
tesimal operators of the group were obtained and 
the commutation relations between them were 
studied. 

In Baker's paper3 the symmetry group of the 
oscillator was investigated from a somewhat dif­
ferent point of view; the elements of the group 
were defined by means of a canonical transforma­
tion which leaves the Hamiltonian invariant. It 
was also shown that the symmetry group of the 
n-dimensional isotropic oscillator is isomorphic 
with the n-dimensional unitary group. 

The relation between the two points of view in 
the case of the two dimensional oscillator was par­
tially discussed by Alliluev. 4 It turned out that in 
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this case in order to explain the additional degen­
eracy it is sufficient to consider the unimodular 
unitary group (which is isomorphic to the group 
of three dimensional rotations), whose infinitesi­
mal operators are linear combinations of the cor­
responding operators of references 1 and 2. 

We shall show here that the two methods of de­
termining the symmetry group are equivalent in 
the general case. 

We shall first of all establish that the commuta­
tion relations between the infinitesimal operators 

Hx =p~ +x2; Mx = YP,-ZPy' Nx = PyPz + yz, 

HY = p~ + y2, MY= zpx- xp,, NY= PzPx -1- ZX, (3) 

H.= p~ + z2, Mz = xpu- YPx• N, = PxPu + xy, 

which were obtained in references 1 and 2, coincide 
with the commutation relations between the infini­
tesimal matrices of the three dimensional linear 
unitary group. Indeed, the matrix of an infinitesi­
mal linear unitary transformation may be written 
in the form 

U '-'=I+ isL, (4) 

where I is the unit matrix, L is an arbitrary 
Hermitean matrix, and E is the smallness param­
eter. It may be seen from this that as linearly in­
dependent infinitesimal matrices we can choose 
the n2 matrices Mij, Nij with the following ele­
ments 

The commutation relations between these matrices 
are of the form 

[ , 1ii, , 1kt] _ 'Mit- .M;"o' . uit- + ·Mik~ 
iV iV - I Ojk- I jl- /JVl Otk l vn, 

[Mii, Nkt] _ .Nil, . .Ntk, ·Nil' .Njk, 
- I Ujk--;- I Ujl- I O;k- I Ufl• (6) 

[ Jv 'i, N·kt] .Mtt, 'M'h . ult- . ui"' , =-I Ojk- I Ojt- liVl ()ik- liVl ()il· 
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If we now set n = 3 

N11 = Hx, 
N22 == H~. 

N~3 = H,, 

N12 ,= N,, 
N 2'l == Nx. 
N31 = Nu, 

,'\112 = - A1x, 
J\.12:1 = -- M Y• 

i\131 = - l\1,, 
(7) 

we obtain the commutation relations between the 
operators (3) which were given in reference 2.* 
Thus, the symmetry group determined in refer­
ences 1 and 2 is isomorphic to the unitary group, 
and consequently is also isomorphic to the sym­
metry group discussed by Baker. t The generali­
zation to the case n > 3 is trivial. 

We now show that the two groups are equivalent, 
i.e., that the unitary operators which carry out 
Baker's canonical transformations coincide with the 
operators discussed in references 1 and 2. 

Baker3 introduces the non-Hermitian operators 

ak = (xk + ipk) / V2, at= (xk- ipk) / l/2, (8) 

while the unitary matrix U corresponds to the 
canonical transformation 

n ll 

a~=~ uk,a/, (9) 
1-1 

It may be easily seen that such a transformation 
leaves invariant the operator H and the commu­
tation relations between the operators ak and a~. 
To construct the unitary operator which corre­
sponds to this canonical transformation we return 
to the variables Xk, Pk· On utilizing (8) and (9), 
we obtain 

ll n 

P~ == ~ (Burt+ Aktp), 

~=l (10) 1=1 
n 

xk = ~ (Atkx; + BtkP;), Pk = L; (- Btkx; + AtkpJ, 
1=1 l=t (11) 

where 
(12) 

and Akz, Bkz are real. The unitary operator 
which corresponds to this transformation may be 
easily obtained in integral form; its kernel 
fu(xto x2, ... ,xn; x~, x~ ..... x~) willbeaneigen­
function of the operators xk in the x' -representa­
tion corresponding to the eigenvalues Xk, while 
fD will be an eigenfunction of the operators xk: in 
the x -representation corresponding to the eigen­
values xk:. This condition determines the kernel 

*The commutation relations (19) of reference 2 contain an 
error: the sign of the right hand side should be reversed in 
formulas (8) and (11). 

tTo be more precise, it follows from this that there exists 
a one-to-one group correspondence between elements belonging 
to certain regions surrounding the unit elements of the two 
groups. 

fu up to a factor independent of xk, xk:. 
We consider a special case of the transformation 

(10), (11), when only one pair of coordinates and mo­
menta is transformed. In this case we may without 
loss of generality consider the one-dimensional os­
cillator. Then U = exp icp, A= cos cp, B =sin cp 
and the kernel of the corresponding integral oper-
ator satisfies the following equations 

- i sincp·of I ax+ coscp·xf = x'f, 

i sin cp·of* 1 ox'+ cos cp·x'f == xf. 

From this we obtain 

(13) 

f"' (x, x') = C (cp) exp [ixx' I sin :p- (i I 2) (x2 + x' 2)cotr.y]. 
(14) 

The coefficient C ( cp) may be determined by re­
quiring that the operator acting -on the ground state 
wavefunction exp ( -x2/2) should leave it unchanged. 
Finally we have 

f'~'(x, x') = (2"sinrp)-'1•exp[ixx' jsincp 

- (i 12) (x2 + x'2)cotcp- ir.p/2 + i"/ 4]. 
(15) 

The corresponding infinitesimal operator may be 
obtained by evaluating for small values of cp the 
expression 

+oo 
~ f '~' (x, x') 9 (x') dx' (16) 

(where ljJ is an arbitrary function) up to terms 
proportional to cp. By using the method of steepest 
descents we obtain 

+oo 
~ f "'(x, x') ~ (x') dx' 

-oo 

= ~ (x) + ir.p (- -~-d~2 + +x2- +) ~ (x) + 0 (cp2). (17) 

Thus, the infinitesimal operator which corresponds 
to this infinitesimal transformation does indeed co­
incide up to a constant factor with the operator Hx 
from formulas (3). The presence of the additional 
term -% is not unavoidable; its introduction does 
not alter the commutation relations between the 
operators and leads only to the ground state wave­
function remaining unchanged when the group oper­
ator acts upon it. 

By utilizing formula (17) we can easily obtain 
the expansion of the function fcp in terms of the 
oscillator eigenfunctions 

00 

f '~' (x, x') = ~ 9m (x) ~m (x') eimrp. (18) 
m=O 

This leads directly to the relation between the func­
tion f and the Green's function for the one dimen­
sional oscillator 
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G (x, x', t) = lJ ~m(xHm(x') e-iEmt = e-it/2f _1(x, x') 
m=O 

= (2r. sin t)-'l•exp [- ixx' I sin t (19) 

+ (i/2)(x2 + x' 2)cott -ir./4]. 

When t = rr/2 = T/4, where T = 2rr is the period 
of oscillation in terms of our units, we obtain up 
to a constant factor the operator for the one-di­
mensional Fourier transformation 

G(x, x', T/4)=(2r.)-'1•exp(-ixx'-ir./4). (20) 

Thus, if at time t = 0 the oscillator wavefunction 
in the x -representation is given by 1/Jo ( x ), while 
in the p -representation it is given by cp 0 ( p), then 
at subsequent times it will vary in the following 
manner: 

t = 0 T/4 T/2 

e-i"12<)!o(-x) 

3T/4 T 

<jl: .Yo (x) e-ir.f4<po (x) e-i3r.f4'Po (-x) e-i"<)io (x) 

<p: 'Po (p) e-i"149o (-p) e-i1ti2'Po (- p) e-i3"fl'<)io (p) e-i"'Po (p). 

Consequently the variation of the oscillator wave­
function with time may be obtained by operating on 
the initial wavefunction with the unitary operator 
of the symmetry group after setting <p = -t in it. 
This unfolding in time represents a continuous 
transition from the coordinate wavefunction to the 
momentum wavefunction and conversely. 

We now consider a second type of transforma­
tion in which two pairs of coordinates and momenta 
take part. Let the unitary matrix be of the form 

U = ( _co_s cp. 
l sm cp, 

i sin cp)· 
cos cp 

(21) 

These matrices form a group, and for small values 
of <p have the form 

U= (1, 0) + icp (0, 1) +O(ri), 
0, 1 1' 0 

(22) 

i.e., the infinitesimal operator of this subgroup 
corresponds to the nondiagonal operator Nij of 
the oscillator symmetry group. Transformation 
of coordinates in this case has the form 

X~= COS qJ •,X1 - sin cp • p2, X1 =COS cp · X~-,!- sin If · p~, 

x~ =cos cp • x2 - sin cp • p1 , x2 =cos cp • x~ ...;-sin cp • p~. 
(23) 

By constructing a system of equations analogous to 
system (13) and by determining the normalization 
coefficient in the same manner we obtain 

(24) 

Finally, by evaluating by the method of steepest 

descents the result of the action of the operator 
on an arbitrary function for small values of <p, 
we obtain 

+oo +oo 
~ ~ f 'll (x1 , x2 ; x~, x~) ~ (x~, x) dx~dx~ 

-QO-CX) 

(25) 

The resultant infinitesimal operator coincides with 
the operators N in formulas (3). 

The third type of transformation corresponding 
to the matrix 

U = ( co~ cp, -sin cp \ 
sincp. coscp)' (26) 

as may be easily seen, does not mix coordinates 
and momenta, and represents a pure rotation in 
the xlt x2 plane. In this case the infinitesimal 
operator will be given by the corresponding com­
ponent of angular momentum. 

Thus, the infinitesimal operators of the groups 
determined in references 1, 2, and 3 are the same. 
Moreover, the generating elements of the group de­
fined in references 1 and 2 are contained in the 
group defined in reference 3. From this it follows 
that the two groups coincide. 

Finally, we shall obtain up to a normalizing fac­
tor the explicit form of the kernel of the integral 
operator for an arbitrary matrix U. In this case 
the function f (X, X') satisfies the system of 
equations 

(AX' - iBv') f =c Xf, (AX- iBv) f = X'f, (27) 

where obvious matrix notation has been used, while 
A, B denote transposed matrices. By multiplying 
the two equations respectively by B -1 and B-1 

we obtain 

v'f/f = iH-1X -iB--1AX', vf If= iB-1X' -iB-1 AX. 
(28) 

From the fact that the matrix U is unitary it fol­
lows directly that the matrices :S-1 A, B-1 A are 
symmetric and, consequently, that the equations 
(28) are soluble. On solving them we obtain the 
general form for the kernel of the integral operator 

f o= c exp [iXB- 1X'- (i /2) (.X'AB-1X' + XB- 1AX)]. 
(29) 

The coefficient C may again be determined from 
the requirement that the operator should leave the 
ground state function unchanged. 

In conclusion we note that the isotropic oscilla­
tor is an example of a system in which the energy 
operator is completely expressed in terms of the 
infinitesimal operators of the symmetry group. In 
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such cases in principle it is possible to obtain 
from just the symmetry properties of the system 
all its other properties (energy levels, degree of 
degeneracy, the Green's function etc. ) . 
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