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Quantum corrections have been found for the equation of state obtained with the aid of the 
Thomas-Fermi model. It is shown that, at all temperatures and densities, the lowest order 
quantum and exchange corrections to the pressure are negative, their ratio not exceeding % ; 
it equals % in the degenerate electron gas region and 1/ 3 in the high-temperature region. The 
boundary of the region of temperatures and densities is found for which the relative contribu­
tion of the quantum correction to the pressure is small and application to the Thomas-Fermi 
model is feasible. 

1. INTRODUCTION 

THE problem of the equation of state of matter, 
i.e., the relation between the pressure, density and 
temperature, is of importance for many problems 
in physics and related_ sciences. In the derivation 
of this equation for condensed media, wide use is 
made of the Thomas-Fermi method (for brevity 
T-F), along with other methods. In a large num­
ber of papers setting forth the application of this 
method (see, for example, references 1 to 3 }, 
quantitative results are obtained relating to a wide 
range of densities and temperatures. 

Although the T-F method is known to be ap­
proximate, the necessary analysis of the applica­
bility of these results has not been carried out. In 
the literature there are only qualitative considera­
tions of the non-applicability of the method for 
small compressions (in the region of low temper­
atures ) and on the improvement of its applicability 
with increase in temperature. However, the quan­
titative problems of the limits of the regions of 
density and temperature in which the method is 
applicable with a given accuracy, and on the size 
of the corrections to the quasi-classical equations 
of state, remain essentially unresolved. The pres­
ent research represents an attempt at a solution of 
this problem. 

It should be observed that the ordinary method 
of applying the T-F method for the derivation of 
the equation of state is connected with second-order 
approximations. In the first place, use is made of 
a simplified model,4 in which we consider isolated 
spherical cells that contain a motionless nucleus 
(of charge Z ) and Z electrons. The radius of 

the cell corresponds to the given density; at the 
boundaries of the cell, the derivative of the poten­
tial is equal to zero. In this model no account is 
taken of many factors: pecularities connected with 
the crystalline structure, vibrations of the nuclei, 
collective interaction of the particles, etc. An 
analysis of these factors enters into the frame­
work of the present research* and in what follows 
we shall make use of the model thus considered. 

In the second place, an exact quantum mechani­
cal solution of the problem, within the framework 
of this model, is replaced by an approximate con­
sideration aecording to T-F method, which is the 
quasi-classical approximation to the Hartree-Fock 
method. Like the latter, the T-F method also dis­
regards the effects of strong correlation between 
the particles; these effects were estimated for low 
temperatures in reference 5, where their contribu­
tion to the pressure is shown to be small and to be 
decreasing with increase in the latter. 

· The quantum effects that reflect the inaccuracy 
of the quasi-classical approximation play a much 
more important role; the following account is de­
voted to their investigation. For an uncompressed 
atom these effects were considered quantum me­
chanically in references 6 to 8. 

The quantity 

(1.1) 

where l is a characteristic length and Po is the 

*It can be assumed that in the really important part of the 
region where the Thomas-Fermi method is itself applicable, 
the role of these factors is not large and they can be con­
sidered independently of quantum effects (about the latter, see 
below). 
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characteristic momentum, appears as a parameter 
that defines the role of the quantum correction. 

We use non-dimensional variables throughout 
the work. As the pressure ff, the numerical den­
sity of the electrons p, and the temperature T 
we use 

kT = .&Z'1'e2 ;'a 
o, (1.2) 

where a0 is the Bohr radius and n = 3a5 / 47TZR3 

is the mean density. 
It is convenient to choose the potential <I> and 

the distance from the nucleus r in the form 

~ = (!L -- fP)jkT, x=rjR., (1.3) 

where JJ- is the chemical potential and R is the 
radius of the cell. 

We proceed to estimate the parameter q. We 
consider two regions: I -the region of degener­
acy of the electron gas ( n/ J 312 » 1 ) and II - the 
region of high temperatures ( n/ J 312 « 1 ) . For Po 
we have ( M is the mass of the electron) 

An estimate of l is more complicated; it is 
given by· (see Sec. 3): 

As a result we obtain 
q ~ z-'i, n -';, I 

q ~ z-'1'n 1 .&2 II 
(1.4) 

It then follows that the quantum corrections: 
(a) decrease with increasing nuclear charge Z 
(see references 6 and 7), (b) fall off with increas­
ing temperature for a fixed density, and (c) at a 
fixed temperature, increase with increasing density 
in II and decrease in region I, and thus have a max­
imum at n "' J 312• These rules are demonstrated 
in Fig. 3, which is drawn from the results of Sec. 7 
(the dashed curve corresponds to n "' J 3/2). 

We now proceed to the problem of exchange ef­
fects, which is closely related to the foregoing. 
Ordinarily, exchange effects are either generally 
disregarded ( T-F model) or are considered ex­
actly within the framework of the classical 
(Thomas-Fermi-Dirac) model (see reference 3, 
fol' example). Such a manner of calculation of the 
exchange is, strictly speaking, inconsistent, since 
the quantum effects, which are not considered in 
this case, are commensurable with the exchange 
effects (reference 6). It would be more valid to 
limit the exchange correction to the lowest order 

since higher order corrections lie beyond the lim­
its of accuracy of the model. 

As the corresponding parameter of the expansion 
we have the quantity (see Sec. 5) 

(1.5) 

It is easy to see that this parameter is identical to 
q, so that the quantum and exchange corrections 
differ only by a numerical factor. 

To conclude this section we consider the peculi­
arities of the Hartree-Fock approximation at tem­
peratures differing from zero, wherein the state 
of the system is a mixture of pure states. In this 
case the concepts of the single particle approxi­
mation and the approximation in which the density 
matrix is multiplicative do not, strictly speaking, 
coincide. The multiplicative approximation usually 
employed (it is used in the present research) cor­
responds to the fact that the force field is unique 
for all the pure states mentioned above; self-con­
sistency is thus produced over the entire mixed 
state as a whole. Self-consistency within the frame­
work of each of the pure states separately is the 
more accurate (and is compatible with the single­
particle description). In this case, however, the 
multiplicative character is destroyed and the solu­
tion of the problem is made more complicated, to 
say the least. The corresponding effects must be 
considered on a par with the usual correlations 
(the latter are responsible for the inapplicability 
of the single-particle approach). 

The following notation is used in this paper: 
a denotes that the quantity a ( r) is referred to 
the surface of the system (in particular at the 
point r = R). 

2. EXPRESSION FOR THE PRESSURE IN THE 
HARTREE APPROXIMATION 

We begin with the expression for the force act­
ing on the system. The total momentum of the lat­
ter can be written in the form 

(2.1) 

where p is the density matrix operator, 7 p = 
·- ili\7 is the momentum of the particle; the spur 
is taken over all variables except the spin. Dif­
ferentiating (2.1) with respect to the time and 
taking into account 

ihdPfdt = [i-J' p), 
we get the following expression for the force: 

dGddt ~=- (i/h) Sp {[H, p] p)· (2.2) 

Here, 
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i'l=p 2 12M+<P(r) (2.3) 8'~(2IM)~dp(n·P)2f-(iliiM)~dp(n·p)(n•Vn- (2.9) 

is the single particle Hamiltonian; <P = U + B, 
where U is the potential of the external field, 
B ( r) = e2 J dr' p ( r')/1 r- r' I is the self-consistent 
potential of the electrons, p is the numerical par­
ticle density. 

We compute the spur in (2.1) and (2.2) with the 
aid of the plane waves 

~ps (r, o) =~(27th)·--':, exp(ip•rlit)oso. 

We then have for the arbitrary (but diagonal in the 
spin variables*) operator 0 

SpO = ~~dr ~dp~psO~ps= 2(2>rltr3~dr ~dp(O)p. (2.4) 

where 

<O)p __ exp (---ip·rlh)O exp (ip•r I h). 

In this notation the distribution function over the 
coordinates and the momentum takes the simple 
form 9 

In this case the density is connected to f by the 
relation 

p(r) = 2~f(r, ~)dp. (2.5) 

From (2.2) to (2.4) we have the following expres­
sion for the spatial density of the force 

(2.6) 

- [f (r, p- it.V)- f (r, p)] <P (r)}p;, 

where the gradient in the latter term operates on 
<P. Expanding this term in a series in li and inte­
grating by parts, we establish the fact that it re­
duces to the expression -'Vi <Pp. In the subsequent 
integration over r, the term - 'V if3P drops out 
(the internal forces ) and we obtain the relation 

dG;Idt=-~PViUdr-~o;kdSk. (2.7) 

Here the first term is the exchange force, uik is 
the strain tensor 

oik = (2 I M) ~ dppiPkf (r, p)- (ih/ M) ~ dpp;Vkf (r, p). (2.8) 

Integration over the second term of (2. 7) is 
carried out over the surface of the system; denot­
ing the direction of the corresponding normal by n 
we obtain the desired expression for the pressure 
{ff' = ninkOjk) 

*States are considered in which the same occupation num­
bers apply to all levels that refer to the same energy. 

We recall that the tilde denotes evaluation at a 
point on the surface. 

3. THE EQUATION OF STATE IN T-F MODEL 

In the quasi-classical approximation which cor­
responds to the T-F model, we can discard the 
second term in (2.9), which vanishes with li, and 
set 

f (r, p) = F (£) = (27thf3 [exp {(£- p.) I kT} + 1p, 
(3.1) 

where 

E (r, p) ~ p2 j2M + <P (r). 

Then (2. 9) gives the well-known equation2 (non­
dimensional variables are used; see Introduction): 

(3.2) 

where* 
00 

In (x) = ~ y"dy I (exp (y- x) +1), 

while 
0 

!~ (x) = nln-1 (x). (3.3) 

To find the limiting value of ~, we must solve 
the equation for the potential. We connect the lat­
ter with density by the Poisson equation 

~x~ (x) = •p (x), "I = (36;-;)'hn'h (f) 

The corresponding boundary conditions are 

x~Jo=·r/3 ~·11=0. 

(3.4) 

The first of these corresponds to <P-- ze2/r 
for r- 0. 

In the T-F model, substitution of (3.1) in (2.5) 
gives the following expression for the density: 

(3.5) 

whence 

It is now expedient to transform to the integral 
equation 

1 

e (x) = 'f + oc. ~ J,,, te (f)] (tjx -1) tdt (3. 7) 
X 

with the normalization condition 
1 

~ f,;, m t 2 dt = ~. ~ =I I 3oc. = (7t2/3V2) n&-'h. (3.8) 
0 

*These functions were investigated and tabulated in refer­
ence 10. 
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FIG. 1 

The solution of the problem in the approxima­
tion under consideration is thus determined by two 
parameters {3 and a. The first of these is iden­
tical with the degeneracy parameter of a homoge­
neous electron gas, the second, as is evident from 
(3. 7), is the parameter of the homogeneity of the 
distribution, determining the departure of ~ ( x) 
from the constant r 

Equation (3. 7) is usually solved numerically. 
We limit ourselves to its analytic solution in the 
region in which the distribution is close to uniform. 
We use the iteration method, assuming a to be a 
small quantity. Substituting the resulting solution 
in (3.8), we can find the desired value of '[. Simple 
calculations give* 

f= ~0 - rxl•;, I 10 + ... , 
P = (2 V2137t2) &'/z [/a;, -(3rxl20)/~;. + • • · J. 

Here the functions I have the argument ~ 0 , 
is determined by the relation 

(3.9) 

which 

(3.10) 

If we can neglect corrections due to inhomogeneity, 
we have the following equation of state 

P = &'1•x (n I &'1' ), (3.11) 

where the function x ( x) is determin,ed parame­
trically: 

Its form is shown in Fig. 1. 
In the region where the electron gas is degener­

ate ({3 » 1 and, in accord with (3.10), ~ 0 - oo), 

we have Itj2 =·% ~ 312 , I3; 2 = % ~ 5/2 , from which we 
find the well-Imown equation11 • 

(3.11') 

In the opposite limiting case of high tempera­
tures ({3« 1, ~ 0 --oo) 

f,;, =(V:;12)e~. /,1, = %1•;, 

then the usual Clapeyron equation holds: 

P=n&. (3.11") 

*It follows from (3.9) that the actual parameter of the ex­
pansion is not a. but a.I'y, (the quantities I'Y,/1~,, h;, are of the 
order of unity). 

The relative error in the pressure connected with 
neglect of non-uniformity is determined by (3.9) 

oP I P = an•;, I P, a= (27t I 5) (3/47t)'!,. (3 .12) 

We now find the boundaries of the region outside of 
which oP /P is less than. a given quantity E, while 
within it it is greater than E. Introducing the nota­
tion E:3n =a, E2J = T, we have 

(3.13) 

for {3 » 1, this gives a = ( 27T3 ) -i, for (3 « 1, 
T = aa1f3• The curve corresponding to (3 .13) is 
shown in Fig. 2. With its help we can, for example, 
establish that use of Eq. (3.11') in the degenerate 
case gives the correct order of magnitude of the 
quantities (within the framework of the T-F model), 
i.e., E "' 1, at pressures 

ff'>6·106Z'% atmos. 

In conclusion, we find the expression for the 
length parameter l (see Introduction). It will be 
the greater of the quantities 

~I v~, (~I ~~)'1'. 

We can limit ourselves to these two quantities if 
we consider only the quantum correction of lowest 
order (see below). Estimating by Eqs. (3. 7) and 
(3.8), we obtain 

l ~ (~0& I n'f, )'lz R. 

In the degenerate case ~ 0 "' n2/ 3 J, at high temper­
atures ~ 0 "' 1 (with logarithmic accuracy). We 
then easily obtain the estimates given in the Intro­
duction. 

4. QUANTUM CORRECTIONS TO THE PRESSURE 

We now proceed to find the corrections to the 
equations of state necessitated by the inaccuracy 
of the quasi-classical approximation. For this 
purpose we expand (2.9) in powers of n, limiting 
ourselves to terms of second order; quantum cor­
rections of lowest order will be taken into account. 

Besides consideration of the second term of 
(2. 9), it is necessary to introduce a more accurate 
expression for the distribution function. We begin 
with the density matrix operator in the form 7 
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(4.1) 

A 

where H is the Hamiltonian of (2.3). If we neglect 
the non-commutability of its components, we im­
mediately return to (3.1). To obtain quantum cor­
rections to the distribution functions, we must take 
into consideration the first commutators of the op­
erators p2/2M and <I>. A simple calculation 
gives: 7 

f (r, p) = F (E)- (iltpV<t> I 2M+ lt2fi<l> I 4M) F" (E) 

- (1t2 I 6M) [(V¢)2 (4.2) 

+ (pV)2 <t> I M]F"' (E)- (1t2 (pV<t>)2 18M2) prv (E) + .. , . 
Substituting this expression in (2.9) and considering 
that 8<I>/8r = 0 on the surface of the spherical cell, 
we have 

It is easy to prove that the last integral on the right 
side vanishes identically. 

Thus, in the approximation under consideration, 
the pressure is connected with the potential on the 
boundary by the same relation (3.2) .as in the T-F 
model. This value of the potential will, however, 
differ from the corresponding quasi-classical value. 

In what follows, the subscript zero denotes any 
quantity that refers to the T-F approximation. 
Setting ~ = ~ 0 + ~ 1> expanding (3. 2) in ~ 1> and 
also taking (3.3) into account, we get the following 

·expression for the relative quantum correction to. 
the pressure 

(4.3) 

To find ft> we must solve the T-F equation 
with quantum corrections. Substituting (4.2) in 
(2.5), we obtain 

0~ = ~~ (47r I 3)'1·Z-'!.&'I• n-'J, u:;; m (V x~) 2 +21:~. (~) t.xe}. 

for the quantum correction to the density. 
Substituting this expression in (3.4), expanding 

in ~1> and taking (3.6) into account, 

f>El - rxl:;, (~o) El 
y- 'I (4.4) 
6~:.: ' {1:;: (Eo) (VEo) 2 + 2rx!;;, (E0) f,J, (~0 ) }· 

A simple substitution can be suggested to sim­
plify (4.4). Setting 

we obtain 

t.ul- rxl;J, (~0) U 1 = rx [(I;J, (~0)) 2 + f,J, (~o)/;~, (~o)l (4.5) 

with the boundary conditions 

xu1! 0 = 0, u; !1 = 0. 

In this case, the quantum correction to the pres­
sure becomes 

5. EXCHANGE CORRECTIONS TO THE EQUATION 
OF STATE 

Account of exchange effects is brought about by 
replacing the Hamiltonian (2 .3) by the expression 7 

if= p212M + <t> (r) - A, (5.1) 

where 

A= 4rre21t2 ~ dp'·p'-2 p(r, p' +p). (5.2) 

Corresponding to this, there appears in (2.6) the 
additional term 

2 ~ dp {vf (a A 1 ap)- vA (at 1 ap)), (5.3) 

where A ( r, p) = <A >p . We .consider only quasi­
classical exchange effects [therefore (5 .3) amounts 
to the ordinary Poisson bracket]: mixed exchange­
quantum corrections are quantities of a higher bor­
der of smallness. 

In the following, exchange effects are considered 
as small (see Introduction), so that we can replace 
f in (5.3) by the expression (3.1). Simple calcula­
tions give the following expression for the contri­
bution of (5.3) to the strain tensor: 

- ~ dp (faA 1 apk- Aat 1 apk)Pi 

and to the pressure 

., 1 (' ~ ~ 
o cfP =- 3 J dpA (r, p) f (r, p). (5.4) 

Furthermore, substitution in (3.1) of the expression 
p2/2M +<I>- A for E (r, p) changes the distribu­
tion function by an amount 

of (r, p) = -2MA8f/8(p2) = -A8f/8<t>. (5.5) 

A change in pressure is also associated with this 
circumstance: substituting (5.5) in (2.9), we have 

o"<fP = -} ~ dpAf. (5.6) 

Adding (5.4) and (5.5), we have (see Appendix I) 

f. 
(3'P+3"P) _ 3z-'1• 1· ' 2 (5.7) 

Po - V2 n&'l:l,f,(G) -L (/•j, (~))dE. ' 
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Finally, exchange effects change the value of r in 
Eq. (3.2). Denoting ~ = ~ 0 + ~2 , we have 

o'" P 1 Po = (3J,,, (e;;) 121.1, (~)) f;. (5.8) 

To find r2 we solve the T-F equation with the 
exchange correction. Starting out from (2.5) and 
(5.5), we have for the exchange correction to the 
density 

or;=--- dpAf a ~ • a<D ' 

or (see Appendix I) 

(5.9) 

With the help of (3.4) we get 

~U2- rx.I:,, (~0) U2 = 6rx. [!;,, (~0) ] 2 , (5 .10) 

where 

The boundary conditions for J.t 1 and J.t2 are iden­
tical. 

The total exchange correction to the pressure 
then has the form 

ll2P V2 z-'1• { f~, ' ~ ~} 
-----p- = -4- 'I• 1 (~) 6 [!.,, (;)]2d; + f,1, (;o) U2 • 

0 TC .lf '/2 ~0 
-Q) 

(5.11) 

6. RELATION BETWEEN THE QUANTUM AND 
EXCHANGE CORRECTIONS 

Equations (4.5), (4.6) for the quantum correc­
tions and (5.10), (5.11) for the exchange corrections 
have an identical structure and can be written in the 
same fashion. Indeed, 

where i = 1, 2 (index 1 corresponds to the quan­
tum, index 2 to the exchange corrections), while 
the functions '1Fi have the form 

'I'\ = 1.,,~:,, + u:,.?. 'I" 2 = 6 u:,y. (6. 3) 

Their ratio 

is a slowly-varying monotonic function. 
In the region of degeneracy, where ro _.... oo , 

1J is constant* and is equal to % . The same is 
also characteristic of the ratio of the quantum and 
exchange corrections: 

(6 .5) 

In the opposite limiting case ~ 0 - - oo, 1J = 1/ 3 and 

(6.6) 

It must be kept in mind that the condition ~ 0 - - oo 

cannot be satisfied throughout the entire volume of 
the atom, since the electron gas is always degener­
ate close to the nucleus ( ~ 0 ~ Ze2/rT- oo ). There­
fore, the ratio (6.6) holds only for sufficiently large 
- ro. where the region just mentioned plays a small 
role. 

Going on to a consideration of the general case, 
we expand 1) ( ~0) in a series about the point ro. 
Taking into consideration the boundary conditions 
in Eq. (3.5), we find 

'YJ (;o) = 'Y) (f0) (I + C (x- I )2 + ... ), 
where 

If C is small in comparison with unity, 1J can be 
considered constant, equal to 1J ( ro ). In this case, 
in accord with (6.2), 

(6. 7) 

To find the regions in which C is small, we 
return to Eq. (3.8). Keeping in mind the monotonic 
character of the functions I1j2 ( ~ 0 ) and ~ 0 ( x), we 
have 

Hence 

I C I = zJf} (3/4n:)'l• &'I· n-'1. 11.1, 'YJ' hI< 0.66 11:); 'YJ' J 'YJ I n-'1•. 

The function I I~~~ 11' I 1J I has a maximum equal to 
1.2 x 10-3, whence 

n > 3. w-~o I c ra. 
Even for C = 0.02, this condition reduces to 1J > 
3 x 10-5, which corresponds to densities greater 
than 5 X 10-4 Z2 g/cm3 ; in this way, virtually the 
entire region subject to this consideration is used 
up. Therefore, the ratio (6. 7) is valid practically 
everywhere. Taking this into account, we have, 
furthermore, 

*.f0 is itself an increasing function inside the atom. There­
fore, if the gas is degenerate on the boundary of the cell, it is 
clearly degenerate inside the atom, too. 
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z-'1, ~ -
= 2 V2 nil'l• bJ, (fo) J., [ 'fJ (~)- 'fJ (~o)l '1"2 m d~. 

(6 .8) 

1J ( ~) is a monotonically decreasing function; there­
fore, the right hand side of (6.8) is always positive. 

At the same time we can show that o1P and o2P 
are negative quantities. With this purpose we make 
the substitution 

f. 
x-1v1 (x) = u,. (x) + 1~,1 (€;;) ~ '¥;(~) d~. 

in (6.1), (6.2). Then 

'i'!,.P z-'J, I•J, -
--p;; = 2V 2 nil' I• l•J, V;, 

f. 
v;- rx./:J, V; =rxx ['l";(~u) + u:j, (~o) I [,j, (fo)) ~ \f";d;j, 

-co 

It is shown in Appendix II that an equation of 
this type (under the condition that its right hand 
side is positive) has a solution which is a non­
positive function. 

It then follows that the quantum and exchange 
corrections to the pressure always decrease the , 
latter: 

(6,9) 

In conjunction with what was said above on the sign 
of the right hand side of (6.8), this yields 

(6.10) 

In this case the departure of 01 pI o2P from 1) ( ro) 
takes place only in the region in which the degener­
acy parameter (3 ~ 1. 

Thus, the ratio of the quantum correction of the 
lowest order to the corresponding exchange correc­
tion does not exceed one third. 

7. QUANTUM AND EXCHANGE CORRECTIONS IN 
THE REGION OF HOMOGENEITY 

We now proceed to search for the explicit ex­
pressions for the quantum and exchange corrections 
in the region in which the distribution is close to 
uniform (as in Sec. 3, this corresponds to small­
ness of the parameter ai1;2). Putting (6.1) and 
(6.2) in integral form, we have 

1 

u;(x) =u,.+ rx ~{'Yi+I;1,u;(t)}(tlx-l)tdt <7·1) 
X 

with the condition 

1 

~ ('¥; -1- f:J, U;) i 2dt = 0. (7.2) 
0 

Using the same method as in Sec. 3, we find as the 
zero approximation 

(7.3) 

substitution of this expression (6.1) gives 

z-'J, I2 { ~· } 
I 'I• , d~- ~ 'f';d~lf,J, . (7.4) 
'I• I 11 , o -co 2 V 2 niJ'I• 

We rewrite (7 .4) in the form 

- Z''· o,.P 1 Po =-= &''• 2,.. (7.5) 

The functions 2:, '11, I etc. in (7 .3), (7 .4) and in 
the formulas below refer to the argument ~ 0 which 
is determined by Eq. (3.10). 

In the region of degeneracy we have for the 
quantum correction 

ihP 5 
- Z'/, Po = _i_S_n-(3-n-2)1;,.-/,- n-'l,, 

' 
for ~ 0 -- co, 

(7.6) 

- Z!l•o1P / P0 = (n I 6) n&-2 • (7. 7) 

The corresponding exchange corrections can easily 
be found by recalculation* (see Sec. 6). We now 
proceed to find the boundaries of the region outside 
of which the quantity - z2/ 3 OiP/P0 is less than a 
given value Oi while inside, it is greater than that 
value. In this way a region is defined in which the 
T-F model is applicable with a given accuracy 
az-2/3. 

Combining (7.5) and (3.10), we have 

•3 <V_2_I 2) I -a •2<> .. 2 
Ui n = 7t IJ2.;;::_i' 0j1J' == .::!.i, (7.8) 

While for large n/ J-3/ 2 we have orn = ( 31T5 ) - 1 ( 5ft 8 ) 3, 

and in the opposite case, oiJ. = ( 1TOfn/6 )1/2. The 
corresponding curves are plotted in Figs. 3, 4.t 

Further, it is necessary to find the limits of 
applicability of these results. With this purpose, 
let us find the further terms of the expansion of 
Ui and OiP/P0 in series in a. In this case, the 
structures of Eqs. (7.1), (7.2), and (6.1) are such 

*Calculation by Eq. (7.5) shows that the minimum ratio 
o1P/o2P is equal to l/5 (and corresponds to ~o = 6). We note 
that the temperature correction (7. 6) is proportional to e 2 for 
8, P /P 0 and to il"ln il for o2P /P 0 • This pecularity of exchange 
effects, to which our attention was drawn by A. S. Kompaneets, 
is connected with the long-range character of the Coulomb 
forces. See also Figs. 3 and 4. 

tThese curves can be also used to find the values of oiP/P0 • 

For this purpose, the curves must be plotted with the coordi­
nates (n, it) for different values of a. 



1088 D. A. KIRZHNITS 

I 
I 

OL..--~--'-~___; 

ro -• z 10-5 o/n 
FIG. 3 

that the term that is linear in a drops out of Ui 
and Oi P. Therefore, the term linear in a in 
6iP/P0 is connected with the expansion of P 0• 

Account of inhomogeneity thus leads to the appear­
ance in (7 .4) of a factor 

1 + (31X I 20) 1~1./1·1,, 

and everything said in Sec. 3 on the limits of ap­
plicability of the homogenous approximation re­
mains in force relative to OiP/P0• 

Thus-, the functions (7 .8) can be used only when 
the corresponding curves lie inside the region of 
homogeneity, i.e., when they envelop the curve (3.1) 
(with a given value of E). This takes place for suf­
ficiently small Oi· Thus the corrections for inhom­
ogeneity do not change the order of magnitude of the 
quantities entering into (7 .4) and (7 .8) ( E "' 1) for 
61 < 0.1 and 62 < 0.5, that is, for 

(7.9) 

Thus, in the region of degeneracy, the T-F model 
is valid with accuracy 61 = 0.01 at pressures 

ff' > l06Z"J, atmos. 

If we are interested only in the region in which the 
degeneracy parameter (3 ~ 1, the conditions (7.9) 
can be somewhat modified. 

For less stringent requirements on the accuracy 
(larger Oi P /P0 ) or larger Z, the curves under 
consideration lie outside the region of homogeneity. 
An analytic solution in this case is not possible; 
numerical results will be published when they are 
obtained. We shall abandon at this point a compari­
son of the results with e-xperiment. 

In conclusion, I take this opportunity to thank 
V. L. Ginzburg, E. L. Feinberg and E. S. Fradkin 
for discussions and L. V. Pariiskaia for the nu­
merical calculations. 

APPENDIX I 

The integral 

~dpAf = 4~te2 1i.2 ~ 1 P~~~;. f (r, p) f (r, p') 

reduces after integration over the angles to the form 

FIG. 4 

where 

n r dx f dy In I Vx + Vy I· 
x <; = l exp (x- ~) + 1 ) exp (y- ~) + 1 V x- V y 

0 0 

Making the substitution x- x + ~, y - y + ~, we 
have 

00 

x'(~)=[~ dxv r=(I-'J,(~))2. 
~ (exp x + 1) x + ~ 

making use of Eq. (3.3) we obtain, finally, 
~ 

X(~) = 4 ~ u:J, (x)) 2dX. 
-co 

APPENDIX II 

We shall show that the equation 

y"- A (x) y= B (x) 

with B ( x) a quantity of constant sign and with 
boundary conditions given at both ends of the in­
terval of integration that are invariable relative 
to ~he substitution y- -y, has a sign-constant 
solution y ( x), the sign of which is opposite to 
the sign of B. 

We limit ourselves to boundary conditions of 
the simplest form. If they are 

y(O)=O, y(l)=O or y(O)=O, y'(l)=O, 

(a) 

then in place of (a) we can consider the functional 
1 

~ {(y') 2 f2 + Ay2 f2 +By} dx, (b) 
0 

the minimum of which is realized by the solution 
of Eq. (a) [we are discussing the minimum, since 
the coefficient in the first term of (b) is positive ] . 

Inasmuch as the first two terms of (b) and the 
boundary conditions do not change in the substitu­
tion y - - y, while the latter term changes sign, 
the extremal of y ( x) belongs to the class of con­
stant-sign functions so that By < 0. Actually, if 
the function y is constant in sign and By > 0, or 
if y changes sign inside the interval of integration, 
then it clearly does not achieve the minimum of (b), 
since the function - I y ( x) I (for B > 0 ) or 
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I y ( x) I (for B < 0) reduces to the much lower 
value of the functional. 

In the presence of a more complicated boundary 
condition 

y(O)=O, y'(l)=y(l) 

it is necessary to make the functional more com­
plicated, adding to the integrand the quantity 
- ( d/dx) (y2/2) [in the opposite case, (a) and (b) 
will not be equivalent to each other ] . The parity 
of this quantity relative to y is conserved by vir­
tue of the previous discussion. 
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