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A study is made of second-quantized elementary Bose excitations of a system of electrons 
( excitons) interacting with polarization vibrations of a crystal. In the case of weak coupling 
the interaction leads to a decrease of exciton energy and an increase of effective exciton 
mass. These effects are estimated quantitatively. 

THE interaction between an exciton and lattice 
oscillations has been considered in a number of 
papers as a single-particle problem. Exciton 
energy and the dependence of exciton-phonon in­
teraction on the internal state of the exciton have 
been investigated for strong coupling by Pekar 
and Dykman1 using the methods of polaron theory 
and by Moskalenko2 using Bogoliubov's3 theory of 
adiabatic perturbations. Ipatova4 used the method 
of Lee, Low, and Pines 5 for intermediate coupling 
and Dykman6 used the method of traces for weak 
coupling. In reference 7 Moskalenko regarded the 
interaction as a small perturbation. Haken8 has 
applied the Feynman variational method to the 
exciton problem. 

In the present paper excitons are regarded as 
elementary excitations in a many-electron system 
interacting with a lattice. The Hamiltonian of the 
system is composed of three parts representing 
electrons, phonons and their interaction: 

(1) 

We shall investigate the energy spectrum of weakly 
excited state of the system assuming that each lat­
tice site holds a single electron, which may exist 
in either the ground state (A. = 0) or an excited 
state (A.= 1): 

(2) 

where f is the index of a lattice site and ab, and 
afA. are electron creation and destruction opera­
tors. The condition for weak excitations is 

(3) 

In distinction from a real model of ionic crys­
tals such as those of alkali halides we here disre­
gard the two kinds of sites as well as spin closure 
of the electron states. The present scheme can 
also be applied to a more real model9 although 
such a complication is not required for the inves-

tigation of excitons. Indeed, the excited state may 
represent either an excitation at halide sides f 
(Dexter's exciton10 ) or electron transfers to 
neighboring alkali sites g (the usual exciton 
model ) . In the latter case there are no valence 
electrons in the ground state at sites g, which 
therefore need not be considered explicitly. The 
homopolar condition (2) will then apply to a pair 
of neighboring f and g sites. We shall not con­
sider spin closure, which is important for the 
analysis of singlet and triplet exciton states. We 
also assume that all electron spins are parallel 
and that excitations are not accompanied by spin 
flips. The spin subscript will now be dropped. 

The Hamiltonian of a many-electron system 
subject to the homopolar condition (2) is given by 

Hel = ~ L (ft.ft.') a);a0 : 

+ L F (fll'd2f..2f1/,~f2t.~) at,,,at,'A,af.'A'at1"' (4) . ' 

where L and F are additive and binary matrix 
elements, respectively, with summation over all 
subscripts. This Hamiltonian is diagonalized by 
neglecting all terms in which more than two oper­
ators have the subscript A. = 1 [weak excitation 
condition (3)]. After introducing the operators 
bf = a£0af1' bf = a£1af0, which in approximation 
(3) obey the commutation relations of Bose statis­
tics, making a linear substitution for operators 
b:f, bf and passing to k -space: 

bt = N-'1• 2: bke-tk•l; bt = N-'1. S b/; etk•l 
k k 

( N is the number of lattice sites in the fundamen­
tal crystal region) we obtain11 
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The energy of elementary excitation ( excitons in 
atomic semiconductors) is then given by vk = 
-Jvf(- u~, where vk and uk are certain combi­
nations of Coulomb and exchange integrals. We 
have analyzed the energy spectrum of these excita­
tions12 for comparison with single-particle theories, 
and have found that for a simple cubic lattice with 
the constant a when k is small Vk and Uk are 
given by 

Vk = £1- Eo-}- d- (R -I)- 61 Q I+ t.~k2j2M, 
uk =- 61 Q I+ I Q i k2a2. (6) 

This expression contains the width E1- E 0 of 
the forbidden crystal energy band, the Coulomb in­
teraction R and the exchange interaction I be­
tween an electron and a hole, the exciton transfer 
integral Q, the effective exciton mass M and, 
finally, the quantity d, which is proportional to 
one-half the sum of the valence and conduction 
band widths: 

R = ~ 6~ (r1) o; (r2) !P (r1 • r 2) 00 (r1) 61 (r2) dr1dr2, 

I = ~ e; (r1) 0~ (r2) !P (r1•r2) 60 (r1) 61 (r2) dr1dr2 , ( 7) 

Q =' ~ 6~ (ri) 6~ (r2- a) !P (rJ.r2) flo (ri) 01 (r2- a) drldr2, 

M-1 '=(mel-+ mh)-1 + 21 Q I a 2 h-2. 

Here ~ ( r 1r 2) is the interelectron interaction 
energy and eA. are the single-particle basis func­
tions that are used for the transition to the second 
quantized representation. 

The phonon energy operator in terms of the Bose 
creation and destruction operators ~I and ~K• re­
spectively, of a phonon with frequency w K is given 
by 

(8) 
" 

Finally, the term in (1) which describes the elec­
tron-phonon interaction becomes af~er second quan­
tization 

where 

Ax = I K 1-l (2~te2hWxCx/ .Q)'1•. 

Here n is the volume of the fundamental crystal 
region, cK = 1/n2 - 1/E ( wK ), and :a2 and E are 
the square of the refractive index and the dielectric 
constant of the crystal. For a specific calculation 

this interaction is given the usual form of an inter­
action between electrons and longitudinal optical 
lattice vibrations (in the approximation of a dielec­
tric continuum). We shall hereinafter be interested 
only in the interaction between the lattice and an 
assumed small number of excited electrons; we 
shall therefore use the interaction law (9), which 
is usually employed for the "excess" electrons in 
the crystal. Any other form of interaction would 
only change the coefficient K but would not affect 
the scheme of the calculation. Introducing into (9) 

+ the Bose operators bf and bf that we,re defined 
above and making use of their Fourier components 
and of (2), we obtain 

Hint= L K (f}..f/.'K) aj;afi.' (~x + ~:!:x) 
/1-1-'x 

= ~ {K (fOfOK) (a~afo + at a !I) 
f.x 

+ [K (f I f I K)- K (fOfOK)] ata11 + K (fifO)() at;afo 

+ K (fOfh) a~afl} (~x + ~:!:x) 

(10) 

"' + ;- v- + = .LJ [W {K) bk bh-x -+ l N Ko1L,, + N K10b ... ] (Ex+;!."). 
k,x 

where 
W (K) = K (flfiK)- K (fOfOK) = AxJo (x), 

Ko1 = K~o = K (fOflK) = AxJI {K), 

J 0 {K) = ~ ei•"(!6J(r) 12 -I 60 (r) 12) dr. (11) 

JJ{K) = ~ ei><·rl)~ (r) 61 (r) dr. 

Thus, by means of (5), (8), and (10) the com­
plete Hamiltonian of the system can be put into the 
form 

(12) 

H 0 = ~ vkbtbk + ; ~ ukbkb-k +} ~ u~btb:!:k + ~ t~wxete,.. 
k k k X 

k,x " 

" We shall consider weak exciton-phonon coupling so 
that H1 is regarded as a perturbation. Before em­
ploying perturbation theory it is convenient to re­
normalize the exciton vacuum in H0, diagonalizing 
H0 in the Bose amplitudes bk by means of a linear 
transformation. 13 Following this transformation the 
Hamiltonian of the system becomes 

H = Ho + H1, Ho ~~ ~v~~t~k + ~1iw"~;te .... 
k X 

kx (13) 

' + + Ko1 (k, K) ~;t (ex +E-x) + compl. conj ], 
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where 

v' ~~ VV2 - u2 (14) k k k' 

W' (k, x) c= \\? (x) (1 + AkAk-x)/[(1- A~) (1- ALx)J'1', 

W" (k, x) = W (x) Ak-x/[(1- A~) (1- ALx J'1', 
K~o (k, x) = (K10 (x) + Ko1 (x) Ak)/[(1 -A~) ( 1 - ALx)J'1', 

Ak = (1/ v!- u~- vk)/uk. 

In the first-order perturbation nonvanishing cor­
rections to eigenvalues of the energy are given 
only by the first term in H1 while the remaining 
terms give only second-order corrections due to 
virtual processes. 

We now proceed to use perturbation theory in 
the form of a canonical transformation to obtain 
corrections of exciton energy resulting from the 
exciton's interaction with the phonon field. The 
canonical transformation of the Ha~iltonian (13) 
is given by 

+!Hu+H~, SJ-t-'/2 [[H0S]SJ+ 
The generating function S is taken in the form 

s = ~ ·~ (k, x) ~t~k-x~x- ~ '1. (k- x, - x) rt~k-x~~"' 
~· ~" 

and the coefficients 1J ( k, K) are obtained from 
the condition H1 + [ H0S] = 0. The first-order 
perturbation gives 

(15) 

where 

v~ = v~ -~I W' (k, x) i2 / (v~+><- v~ + 1iw"), 

" (16) 
, . 1 "'21W'(k, x)l 2 (vk-vk-><) ~ 

(J) = (J) ···+- - L.J ' ' bk bk. 
" " 1i k (vk ~- vk->< )2 ·-1i~w~ 

Here w~ is the renormalized frequency of "free" 
phonons. If the expressions given above contain 
divergent denominators the canonical transforma­
tion method must be used in the form which Bogo­
liubov proposed in his papers on the theory of 
superconductivity. 

For the purpose of simplifying the succeeding 
calculations we shall make the reasonable assump­
tion that the exciton transfer integral is consider­
ably smaller than the width of the energy gap in 
the crystal: 

I Q I <'S £1- Eo. (17) 

Then from (14) and (6) 

W' (k, x) 

' f · 9 I Q I" [ f a• . 1i" \ = W (x) 11 T 2(£1-Eo)" 1-\6 + 2 (£,- EoHmel + mh)) 

X (k2 + (k- x?) j} = W (x). 

By a series expansion of the denominators in the 
coefficients vk: of Eq. (15) in terms of exciton mo­
menta, by integrating instead of summing over pho­
non momenta, and by using (6), (7), (9), and (11), 
we obtain from (16) the following expressions for 
the variation of the energy gap width and of the 
effective exciton mass: 

, e21i ~· I Jn (x) i2 w" Cx: 
D..E = D..E-~ . "(h _, 1t' '12M) dx. 

f'Tt X. Wx I X. 1 

• [ e"1t" ~ I J, (x) I" (kx)2 w" c" ] M = M 1 - -- . . . dx . t- L.rt"JVik" x- (!tw,. + h"x" I LM)·l 

(18) 

Thus the exciton-phonon interaction lowers the 
energy level of the exciton and increases its effec­
tive mass. This result agrees qualitatively with 
the results of Dykman6 and Moskalenko7 for weak 
exciton-phonon coupling. The shift of the exciton 
energy level that results from interelectron and 
electron-phonon interactions may be essential for 
an examination of certain effects. For example, 
the character of the field dependence of energy 
shifts in electric and magnetic fields is changed; 
specifically linear terms with respect to the field 
appear .14 For an electron interacting with the 
phonon field we must set 80 ( r) = 0 in (11) and 
pass to the wavelength limit. This gives the en­
ergy reduction atiw that is known from polaron 
theory15 with the dimensionless coupling constant 
a = e2c ( m/2wti3 ) 112• 

For numerical estimates it is necessary to 
adopt a definite form of the second-quantization 
basis functions eA. ( r), compute J 0 ( K) from (11) 
and calculate the integrals in (18). When expand­
ing the wave function of the system in second­
quantization basis functions we use an incomplete 
set of functions, stopping after the first two terms 
(A. = 0 and A. = 1); the selected functions 80 ( r) 
and 81 ( r) must therefore represent as adequately 
as possible the real electron states in the crystal. 
We have performed a calculation for the Cu20 
crystal, where the coupling between excitons and 
the lattice is apparently weak. We used the Zhilich 
function16 80 ( r) =A exp { -1.03 r/aB} and the 
Slater function 17 e 1 ( r ) = B exp { - 0. 7 43 rIa B } 
with values of wK and cK for the wavelength 
limit. The exciton energy level is reduced by 
0.027 ev while its effective mass is increased by 
0.4%. No quantitative accuracy can be claimed 
because of the crude model used and the tentative 
character.of the wave functions. However it should 
be interesting to develop our many-electron method 
further by using a specific model and also by con­
sidering the behavior of the system in an external 
field. 
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In conclusion we wish to thankS. V. Vonsovskii 
for discussions of the results. 

1 S. I. Pekar and I. M. Dykman, Tp. II«<>AH 

YCCP (Trans. Inst. Phys., Acad. Sci. Ukr. S.S.R.) 
3, 92 (1952). 

2 V. A. Moskalenko, Y'l. 3an. KHIIIHHeB.CXX 

YHHBepc. (Sci. Reports, Kishinev. Univ .) 17, 103 
(1955). 

3 N. N. Bogoliubov, YKp. MaTeMaT. )1'-YPHaJI 

( Ukr. Math. J.) 2, 3 (1950). 
4 1. P. Ipatova, J. Tech. Phys. (U.S.S.R.) 26, 

2786 (1956), Soviet Phys. ~'Tech. Phys." 1, 2692 
(1957). 

5 Lee, Low, and Pines, Phys. Rev. 90, 297 (1953). 
6 I. M. Dykman, J. Tech. Phys. (U.S.S.R.) 27, 

1731 (1957), Soviet Phys. "Tech. Phys." 2, 1609 
(1957). 

7 V. A. Moskalenko, J. Exptl. Theoret. Phys. 
(U.S.S.R.) 30, 959 (1956), Soviet Phys. JETP 3, 
801 (1956). 

8 H. Haken, Z. Physik 147, 323 (1957). 
9 M. Sh. Giterman, «<>H3HKa MeTaJIJioB u 

MeTaJIJioBe;IJ;eHHe (Physics of Metals and Metal Re­
search) 5, 364 (1957); 6, 930 (1958). 

10 D. L. Dexter, Phys. Rev. 83, 435 (1951); 10'8, 
707 (1957). 

11 V. S. Galishev and S. V. Vonsovskii, «<>u3HKa 

MeTaJIJIOB H MeTaJIJioBe;IJ;eHHe (Physics of Metals 
and Metal Research) 3, 385 (1956). 

12 G. G. Taluts and M. Sh. Giterman, «<>H3HKa 

MeTaJIJIOB H MeTaJIJIOBe;IJ;eHHe ( Physics of Metals 
and Metal Research) (in press). 

13 N. N. Bogoliubov, Jlexn~ii 3 KBaHTOBoi 

cTaTHCTHKH (Lectures on Quantum Statistics) 
(in Ukrainian), Kiev, 1949. 

14 G. G. Taluts and M. Sh. Giterman, «<>H3HKa 

MeTaJIJIOB H MeTaJIJIOBe;IJ;eHHe ( Physics of Metals 
and Metal Research) (in press). 

15 c. R. Allcock, Adv. in Phys. 5, 412, 1956). 
16 A. G. Zhilich, BecTHHK JirY (Bulletin, 

Leningrad State University) 4, 31 (1957). 
17 J. C. Slater, Phys. Rev. 36, 57 (1930). 

Translated by I. Emin 
319 




