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A new variant of the statistical perturbation theory is presented, which consists in the setting 
up of a model of a dynamical system whose Hamiltonian contains the inverse temperature in 
parametric form. It is shown that for this dynamical system the perturbation theory is equiva­
lent to the ordinary statistical perturbation theory and is much more convenient for practical 
calculation. 

AccORDING to the principles of statistical phys­
ics, the thermodynamic properties of systems in 
thermal equilibrium can be determined by the sum 
of states. In quantum statistics the latter is usually 
represented as ( in the case of a grand canonical 
ensemble) 

where (3 = 1/®; ® is the temperature in energy 
units; a = {3f.1.; fJ. is the chemical potential. 

(1) 

Taking into account the formal similarity be­
tween the statistical operator of a canonical en­
semble and the operator describing the time se­
quence of a dynamical system, a number of authors 
have developed several variants of the statistical 
perturbation theory in analogy with the correspond­
ing formalism in contemporary quantum field 
theory .1 The fact that only slight practical results 
have been obtained in this direction is connected 
in large measure with new difficulties of calcula­
tion. Thus, for example, instead of the averaging 

·of the quantum amplitudes over a real vacuum, we 
deal here with an averaging over the canonical en­
semble of free particles; inasmuch as we have the 
quantity i(3 in place of the time variable t, inte­
gration always extends from zero to some finite 
value. It must be noted that in the researches of 
Bogoliubov, Zubarev, and Tserkovnikov2•3 the sta­
tistical perturbation theory supplemented by the 

1 method of canonical transformations is success­
fully applied to the exact calculation of thermody­
namic functions of some model problems in the 
theory of superfluidity and superconductivity. We 
now consider a new version of statistical perturba­
tion theory, which consists in the setting up of a 
model dynamical system, the determination of the 
ground-state energy of which makes it possible to 
compute the change in the thermodynamic potential 
of the system upon inclusion of theinteraction for 

a given temperature (3. 

Keeping in mind the description with the aid of 
the grand canonical ensemble, we represent the 
Hamiltonian of the system under consideration as 

' . "' + H = H0 + V. H0 = ~ (£(.?) - :;.) ak, aks -'- LJ G(q)bq bq, (2) 
q 

where aks. aks· b~, bq are the Fermi and Bose 
amplitudes; E ( k) and w ( q) are the eigen ener­
gies of the fermions and bosons with quantum num­
bers k, s, and q, respectively; fJ. is the chemical 
potential, determined from the condition of the equal­
ity of the average number of fermions with the actual 
number of fermions in the system; V is the Her­
mitian form of aks• aks and b~, bq. 

We introduce these statistical sum :S and the 
thermodynamic potential 

We then have the very well-known relations 
(reference 1, see also reference 4): 

where 

(3) 

the index "coup" means that in each term of the ex­
pansion all the intermediate states are coupled to­
gether by the matrix elements of V. 

To obtain an explicit form of the expansion of 
6 in V, we assume a new much simpler method 
in place of the ordinary formalism of time sequence 
according to the temperature variable, since the 
finite limit of integration brings about an appreciable 
complication. 
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We introduce the Laplace transform of the sta­
tistical operator1 

( z - H) -i = ( z - H0 ) -i + ( z - H0 ) -i R ( z ) ( z - H0 ) -i, 

R ( z ) = V + V ( z - H0 ) -i V + . . . [the contour r 
proceeds downward, parallel to the imaginary axis, 
to the left of all singularities of the function 
( z -H) -i]. 

It is known5 that the matrix element R ( z) and 
the function ( z - H) -i are analytic as functions of 
the complex variable z if we make a cut along the 
real axis beginning at some point up to + oo • For 
a finite volume of the system, the singularities are 
densely-located poles. 

We can then write (3) in the form 

'V = 'Yo- ([:l20t 1 2~;' ~ e-~z Sp [ (z- H ot2 R(z)cou~ dz 
r 

making use of the invariance of the trace relative 
to a cyclic permutation of the cofactors, it is easy 
to establish that 

2~i ~ dC c-2e-~~ ~o(s- H o)R(( + E)coup>' 
]' 

= -- f:l ~ o(s- Ho)R(s)coup'> -

In this case all terms containing ( E - Ep) - 2 

(where Ep is the energy of any intermediate 
state ) cancel each other. Thus, we are led to the 
very useful expression of statistical permutation 
theory first obtained by Bloch.1 . 

00 

'P' ='Yo+ ~ ds < o(s · - H 0)R(s)coup;,.. (4) 

The basic idea of the present paper consists of 
the fact that the second term in (4) can be replaced 
by the change in energy of the ground state of any 
model of the dynamic system upon inclusion of the 
interaction. In the Hamiltonian of this model sys­
tem (we shall call it the statistical model Hamilto­
nian), f3 entered as a numerical parameter. 

Let us prove the fundamental theorem, following 
the scheme of Bloch.1 Let A be the product of the 
Fermi and Bose amplitudes; then we have the equal­
ity 

(5) 

where I <PF> is the vacuum state of the new Fermi 
and Bose amplitudes determined by the relations 

at= (I- fk)'i•ck~- + nbks. aks = (1- fk)'l•cks + f~·bt;,. 
Cks I <DF) = bks j <DF > = 0. 

(6) 
bq = (I + hq)' 12Yjqo + h'/,Yj+ , b+_ c= ( 1 + h )'{,,.,+ + h'l•'tl . 

q ql a q ·•qo q -,qi • 

Yjqo I <DF) =·Y1ql i <I)l<') = 0, 

where fk and hq upon determination are equal to 
the mean occupation nllinber of the fermion state k, 
s and the boson state q 

ik ==. < at,aks > = ( 1 + e~(E(kl-"))-1 , 

(7) 
h"= < b;jbq ?> = (e;Jw(qi_Jrl. 

We now prove the theorem by induction. First we 
note that <<A~ differs from zero only when A 
consists of the aggregate of pairs of creation and 
annihilation operators of the boson or the fermion 
relative to one and the same individual state. Since 
exp (- {3H0 ) has been factored, it then suffices to 
exhibit this theorem for any given state k. If all 
the pairs in A refer to different states, then the 
theorem is identical with the determination of fk 
and hq, since 

fk '=' ~ atsaks > = (at,aks>' 
(8) 

hq= ~ b+b ';;Po= lb+b) q q '- q q • 

In the case of the presence of several pairs with 
the same index, the problem reduces to the proof 
of the following two assertions: 

(a) If <<AapsapsB~ = <AapsapsB> and 
<<AB~ = <AB>, then ~AapsapsB~ = 
< AapsapsB >. 

This assertion is the consequence of the com­
mutation relation for aps and ats, while A and 
B are the products of the operators a~s, aks, 
b~, bq. For the case of bosons we have: if 
~AB~ = <AB> and ~Abeibq~ = <Abeibq>, 
then 

(b) If in A there are n pairs of Fermi ampli­
tudes with the index k, or m pairs of boson am­
plitudes with index q, we have the equalities 

In the case of fermions, the equality is trivial since 
the mean value of the null operator appears on both 
sides. In the Bose case, writing out both sides,. 

< brb:::;... =· ~ (b;J"bq -- m + 1) (b;jbq- m + 2) ... b;jbq > 
= m!h"' (b+mbfn.) o7C h"'(71nl 'l]+m> = m!h"' • 

<I q 'I ' q lq 1 lql q 

(a) and (b) contain the complete proof of the theo­
rem. 

We now consider the model dynamical system 
with the Hamiltonian 
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ks 

(9) 

,, 
The change in the ground state energy of this sys­
tern will be 

t:..Pt= 7 <o(e-H'I)[V+V~Hs1 V+···] )ds. J 0 ~ ·-- 0 coup 
--00 

(10) 

Applying our theorem to the expression under the 
integral, it is not difficult to note the identities (10) 
and the second term (4). Choice of H~t guarantees 
the averaging over the present dynamical vacuum 
and the correct energy gaps. Thus we obtain 

'I' = o/ 0 + f:...£51 . (11) 

i.e., the correction to the thermodynamical poten­
tial at a given temperature is equal to the change 
in the ground state energy for the dynamical sys­
tem with the Hamiltonian Hst. This assertion 
completes the program outlined above. 

We now proceed to a discussion of the results. 
1. The physical idea which underlies the fore­

going formal transformations is that the statistical 
average over the canonical ensemble is considered 
as a quantum mechanical averaging over the state 
I <l>F >, in which the individual states are filled 
with the probability corresponding to their weights 
in the ensemble. The ordinary formalism of per­
turbation theory is built up relative to I <l>F >. 
Consequently, I <l>F > is the analogue of the vacuum 
state of the free system at temperatures different 
from zero. For fermions, it is a Fermi sphere with 
a diffuse edge, while for bosons it is a "smeared" 
Bose-condensate. (The states below the condensate 
are filled with the probability hk)· The appearance 
of quasi-particles b, c, 1J on I <l>F > corresponds 
to a departure from statistical equilibrium. At zero 
temperature, they go over into a real perturbation: 

the electron-hole on the Fermi sphere and the boson 
on the condensate (the boson 7Jk/, 71k1 does not 
appear at absolute zero). 

2. The new formulation possesses a great advan­
tage for practical calculations since, for the treat­
ment of the statistical model of the Hamiltonian, 
we can without complication call upon the entire 
methodology developed for the investigation of other 
dynamic systems: in particular, perturbation theory 
and the Green's-function method of modern quantum 
field theory, and also the method of canonical trans­
formations in its many versions. In particular, for 
consideration of phase transitions of second order 
and Bose-Fermi systems, we can formulate the 
principles of compensations of the various diagrams 
of Bogoliubov6 at temperatures differing from abso­
lute zero. 

In conclusion the author expresses his gratitude 
to Academician N. N. Bogoliubov, V. V. Tolmachev, 
S. V. Tiablikov and also to V. A. Moskalenko, Chao 
K'ei-hua and Chou Hsi-shin for their interest in the 
work and for a number of valuable suggestions. 
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