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A theory is developed for the absorption coefficient and the refractive index in the absorption 
bands corresponding to exciton excitation in molecular crystals at low temperatures. It is 
shown that the structure of the absorption band can serve as a means of determining the sign 
of the effective mass of the exciton. Conditions are found for which the index of refraction 
equals zero at the short-wave side of the absorption band. Electromagnetic waves at these 
frequencies are completely reflected from the crystal surface, penetrating it to only a small 
depth. When the temperature is increased this effect vanishes. 

INTRODUCTION 

BECAUSE of the recent work of Pekar, 1 Ginzburg,2 

and Agranovich and Rukhadze3 attention has been 
directed to the propagation of light in crystals char­
acterized by spatial dispersion. It has been shown 
in the work cited above that in frequency regions 
close to the exciton absorption band the index of 
refraction can have several values for waves of 
the same frequency, direction of propagation, and 
polarization. Only the transparent region of the 
crystal has been studied in references 1 to 3. How­
ever, it is of interest to consider propagation of 
electromagnetic waves in a crystal at frequencies 
corresponding to absorption bands. 

The reduction in the amplitude of an electro­
magnetic wave as it passes through matter is due 
to two effects: (a) scattering, (b) conversion of 
energy in the electromagnetic wave into the energy 
of motion of the molecules (true absorption). In 
this paper we shall be interested only in true ab­
sorption at crystal temperatures close to zero. 

The molecules of a molecular crystal are neu­
tral; hence an optical wave cannot communicate 
motion to them directly. However, when the mole­
cules are excited there are additional interaction 
forces between molecules and these shift the equi­
librium positions of the molecules. Thus, true ab­
sorption is due to coupling between the internal 
molecular excitations and the molecular oscilla­
tions. This coupling leads to a considerable broad­
ening of the absorption band at absolute zero. 

Davydov4 has shown that excitations of two 
types can be produced in molecular crystals by 
optical waves: (a) localized excitations that propa­
gate slowly through the crystal and whose polari-

zation is determined by the orientations of the 
molecules, which are considered as independent 
absorption center, (b) exciton excitation, i.e., 
excitations that propagate rapidly in the form of 
excitation waves in the crystal. These excitations 
are responsible for the appearance in the absorp­
tion spectrum of sharply polarized "crystallo­
graphic" absorption bands, the polarization of 
which is determined by the crystallographic 
structure. 

The absorption bands corresponding to the lo­
calized excitation are roughly Gaussian in shape 
and do not yield any information as to the detailed 
structure of the crystal. The absorption bands 
corresponding to exciton excitations, on the other 
hand, are very sensitive to crystallographic struc­
ture. Consequently, an investigation of the struc­
ture of exciton absorption bands is one of the 
methods of studying crystallographic structure, 
the energy of the exciton states as a function of the 
propagation vector of the exciton, and the exciton 
interaction with the lattice vibrations. 

An analysis of the structure of the optical ab­
sorption band in a molecular crystal has been given 
by Davydov, 5 using a one-dimensional crystal; Davy­
dov and Rashba have considered a more general 
case. However, in this work no account was taken 
of the self-consistency of the problem: the propa­
gation vector of the optical wave which excites the 
crystal depends on the refractive index and the 
optical absorption. This self-consistency may be 
especially important close to an absorption band 
where, in certain cases, it leads to spatial disper­
sion. In the present paper we investigate the pas­
sage of light through a crystal in the region of the 
absorption band using a simple model of the molec-
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ular crystal; in this model the molecules can exe­
cute translational and rotational oscillations about 
the fixed equilibrium positions. 

1. CRYSTAL WAVE FUNCTIONS IN THE PRES­
ENCE OF OPTICAL WAVES 

Let G be some region of a molecular crystal 
with a cubic lattice in each elementary cell of which 
there is one molecule. All molecules have the same 
equilibrium orientation. It is further assumed that 
the region G is a cube with sides Niai ( i = 1, 2, 3) 
where the ai are the base vectors of the lattice. 
Then the position of the center of gravity of the 
molecule is given by the vector R = r + n where 
r is the coordinate of the center of region G while 
n = ::Bniai, n = 0, ± 1, ± ..... ±Ni/2 (i = 1, 2, 3). 
The total number of molecules in region G, N = 
N1N2N3 must be large enough to exhibit the basic 
interaction effects between molecules; at the same 
time the dimensions of the region must be smaller 
than the wavelength of the light. 

In the absence of interactions between the ex­
citon excitations and the lattice vibrations, the fre­
quency of the exciton excitations can be written in 
the form 

wk = w0 + ('t/2) (cos k·a- 1), (1.1) 

where li IT I is the energy width of the exciton 
band for excited states. The wave function corre­
sponding to the excitation (1.1) is of the form 

n n'=l= n 
(1.2) 

where cpb_ ( Pn) and o/n ( Pn) are wave functions 
which determine the excited and ground states of 
the molecule at n. 

For simplicity we assume that the exciton ex­
citations interact only with two kinds of lattice 
vibrations: translational and rotational oscilla­
tions. The frequencies of these oscillations are 
given by the relations 

v~ = v~ax sin2 (p ·a/2), Dq = .Q0 + Li2°(cos q • a- 1 ), (1.3) 

where I An I is the width of the band of the optical 
frequency branch. The propagation vectors k, p 
and q run over N discrete values ::B ( 21r/Ni) biJJi 
( 11 = 0, ± 1, ± ..... ) if we take cyclical boundary 
conditions with periodicity Niai as boundary con­
ditions. Here the bi are the vectors of the recip­
rocal lattice. 

In actual crystals the dependences of Wk, Vp, 
and nq of the propagation vectors can be expressed 

by more complicated functions than those given in 
(1.2) and (1.3). It is important, however, that in 
the limit of infinitely long waves nq and Wk ap­
proach a finite limit while Vp- 0. Usually, in 
molecular crystals the width of the exciton zone 
exceeds the width of the zones which correspond 
to lattice vibrations, i.e., the following inequality 
holds 

J 't: > Jf..Q ], 'lmax· 

Further, let H0 be the Hamiltonian, whose 
eigenfrequencies 

E~;;~q = li ((J)k + 'lp + Dq), 

and whose eigenfunctions <I>kpq = 1/Jkl/Jpl/Jq corre­
spond to excitation in the crystal of one exciton, 
one accoustical phonon and one optical phonon. 
The ground state of the crystal (at basolute zero ) 
will be a state in which none of these excitations 
are excited. The energy of this state will be taken 
as zero energy and the wave function will be denoted 
by <I>o. 

The operator for the interaction of the excitations 
with the lattice vibrations is 

where 

H 1 = N-'f, 2] V~1~?n· ?m { Ap (eiP· "-eiP· m) 
mn 

H2 = N-'J, ,l; V~~?tt• ?m {Aq (eiq·n + etq•m) 
mnq 

+At (e-iq•n+ e-i~· m)}. 

Here Pn is the ensemble of internal molecular 
coordinates for molecule n; A~ and ~ are cre­
ation operators for the appropriate phonons. When 
these operate on the function <I> 0 they produce a 
state with one phonon of the appropriate type. Op­
erators Ap and Aq are annihilation operators 
for the corresponding phonons. 

The operator for the interaction of the electro­
magnetic wave 

E = 2£0 exp (-A· R) cos (wt- Q ·R) 

with the molecules of the crystal (when the wave 
length is much larger than the molecular dimen­
sion) can be given by the expression* 

*In computing the exciton excitations, account has already 
been taken of the dipole-dipole interaction of the molecular 
electric moments induced by the light wave; hence, in operator 
(1.4) we introduce the average field rather than the effective 
field. 



1050 A. S. DAVYDOV and A. F. LUBCHENKO 

W =- c E, ~Pn L;' cxp {(i/.Q -~A) • (r + n)- i/.lut}. 
11 i~+.- (1.4) 

In 'the presence of the light wave, the crystal 
state is described by the Schrodinger equation 

(ihJjdt-1! 0 - f/1 - H2 - W) F = 0. (1.5) 

When the interaction between the excitons and the 
lattice vibrations is weak, we can use the one­
phonon process; hence we seek a solution of (1.5) 
in the form of a series 

1, = D0 (t) lV0 + _2; bk?q (t) <l>l<po, exp [- i (wkpq- h'kpq/2) t], 
k;q 

(1.6) 

with initial conditions 
' 

b (0) = 1, bkpq (0) = 0. (1. 7) 

The matrix elements of the operator W are of the 
form 

(1.8) 

where d = ( cpf I ep I cp) is the electric dipole mo­
ment excited by the optical wave: 

o;.Q,k' = N-1 ~e-ll.n exp [in • (i. Q- k')]. 
n 

If N1aA « 1 the matrix elements in (1.8) are dif-· 
ferent from zero, only when k' = A.Q. If the absorp­
tion is not very small the matrix elements (1.8) 
will be different from zero at several values of k' 
close to A.Q. From Eqs. (1.6), (1.8), and (1.5) we 
find as a first approximation (neglecting H1 and 
H2) 

b 
(E0 ~d) N'" exp [t (w;_Q- J.w- rr,Q/2)]-1 

1t W;,Q- ),w- iY;,Q/2 
(1.9) 

Thus, in the same approximation the wave function 
for the crystal (when there is an optical wave of 
frequency w present, (at large values of t) can 
be given by the expr~ssion 

F = lf)o + (!:o_od) (iV 2J exp r~ il.wt + il. Q•r-:A·r] <I>;,Q, 
1t i.~+.- WQ -).w -LY;,Q/2 

( 1.10) 

where YA.Q is a complicated function of frequency, 
the determination of which requires the solution of 
Eq. (1.5) in the next approximation, which takes ac­
count of the interaction of the excitons with the lat­
tice vibrations. 

2. CALCULATION OF THE COEFFICIENTS y 

The matrix elements of the operators that de­
termine the coupling between the excitons and the 

lattice vibrations can be written in the following 
form: 

where 

(<P~p I H1 i wi.Q) = ! d 12 VlN-'''o;.Q,k+P• 

( <P~q! H 2! <I>~,Q) = 1 d 12 v 2N-' 1'o~,Q, k+q· 

vl:::::::; glv;''• sin (p•a/2) sin [(2f..Q- p)-a/2], 

v2:::::::; g2n-q''• cos (q. a/2) cos [(2f..Q- q)-a/2]. 

(2 .1) 

Using Eqs. (2.1) and (1.9), we find bA.Q-q, q and 
bA.Q-p, p from Eq. (1.5); then, multiplying (1.5) by 
<I>~Q• we have 

. _ 21dl4 {~I ,2 1-exp[-i(wQ-p-J.w+vp)t] 
r,.Q- ---,:r- LJ vl I "' - ""' + v p Q-p p 

(2.2) 
~ V 2 1- exp [- i (wQ-q- J.w + Qq) t]} 

+ LJ I 2 I "' _ ""' + 0 , q Q-q q 

where A. takes values + or It follows directly 
from Eq. (2.2) that 

1-Q = 0. (2.3) 

Taking account of (2.3), at large values of t, we 
can write 

where 

ltr = 2J d /4 N-1 ~I V1l2 ~ (wQ-p + Vp- w), 
p 

q 

(2.4) 

(2.5) 

and ?;(X) is a Singular function defined by the re­
lation 

r(x)=lim 1 -exp(-ixl) --o(x)__j_iP~ 
~ ix - 4 ~ 1 x · 

t-~00 

The imaginary part of this function causes a shift 
in the energy levels of the system and will not be 
considered in what follows (cf. reference 7, § 16 }. 

In Eq. (2.5) we change the summation to inte­
gration and introduce the new variable 

d p =dad'; (p)/i grad; (p) 1. ~ (p) = WQ-p + 'lp, 

where du is a surface element, and ~ ( p} = const; 
thus, we can write 

~. 
a• 1 d 1• \' 1 v, 12 • 

"[tr (w) = ·~ ~ dad; I grad~ (p) I q;- w) 
~. 

Jg,a'(dj• \ sin2 ([2Q-p]•a/2)Jisin(p·a/2)idcr if ; 1 <w<e2 , 

=·2;-:'Vvmax) I'L'sin[(Q-p)•aJ+vmaxcos(p•a/2)1' ' 

I 0 if w is outside the 
interval ~ 1 , ~ 2 . 

(2. 7} 
The quantities ~ 1 and ~ 2 are respectively the 
smaller and larger of the values WQ and WQ-7l'b 



ELECTROMAGNETIC WAVES IN THE REGION 0 F EXCITON ABSORPTION 1051 

• M '>0 

(,}Q-Jrja 

• rrwJ r 
u < o I 

I 
.,.,.,~ 

~~·~~~·~=-~----- w 
"'g-J[fa "'o 

FIG. 1 

+ vmax; the integration in Eq. (2. 7) is carried out 
for all values of P which satisfy the condition 
w = WQ-P + Vmax · 

We now assume that the frequency w inside 
the absorption band approaches WQ, then p ...... 0 

and it follows from Eq. (2. 7) that Ytr ...... 0. In 
Fig. 1 is shown the dependence of Ytr on w close 

.ru 

FIG. 2 

to the frequency WQ for positive and negative ef­
fective exciton mass. Carrying out a similar trans­
formation of Eq. (2.6), we have 

1 
g2a2 I d I' ~ cos2 [(2Q- q)·a.'2j cos2 (qa/2) dcr 
----- 'I , if (l<w<~2 

2r.2 {!2 0 + (~!2/2) (cos q·a-1)} 'I -r sin (Q- q)oa -~!2 sin Q•a 1 
lrut (w) = 

0, if w is outside the interval Cr. (2 , 

(2.8) 

where 1;1 and 1;2 are respectively the smaller 
and larger of the values. WQ + n 0 and WQ-7Tb + 
n 0 - .t..n0 • The integration in Eq. (2.8) is carried out 
over all values of q which satisfy the relation 
w = WQ-q + nq. In Fig. 2 is shown the dependence 
of Yrot on frequency for positive and negative ef­
fective exciton mass. 

If the crystal temperature is not zero, the inte­
grands in Eqs. (2.7) and (2.8) will contain the factors 
( np + 1 ) and ( nq + 1 ) respectively where np and 
nq are the mean numbers of phonons at a given 

' temperature. At high temperatures ( n + 1 ) and 
y are proportional to temperature. When the tem­
perature is increased, in addition to the increase 
in y, which corresponds to the emission of pho­
nons, there are additional terms which correspond 
to the absorption of phonons by excitons. Both of 
these increase l'tr and 'l:'rot and cause consid­
erable expansion of the frequency region in which 
these quantities are different from zero. 

We have considered above the interaction be­
tween exciton excitations with two branches of the 
lattice vibrations. However, a larger number of 
branches take part in the interaction. Because the 
different oscillations are independent, each makes 
an additive contribution to y; consequently 

I (w) = ~ ll\,(w) + l~ot (w)]. 
i 

In Fig. 3 is shown a possible form for the depend­
ence of y on w at absolute zero. As the temper­
ature increases the curve y ( w) expands in both 
directions about the frequency WQ. In computing 
y ( w), we consider only the interaction of exciton 
excitations with lattice vibrations. However, to 
this value of y ( w) it is necessary to add the nat­
ural width ( r ) of the internal molecular level 
associated with the finite lifetime of the excited 
state of the free molecule (radiative and nonradi­
ative transitions). In luminescent crystals r « 
y ( w) inside the absorption band so that these 
corrections need not be introduced. 

j(Wj 

* M>U 

FIG. 3 
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3. EQUATIONS FOR THE ABSORPTION COEFFI­
CIENT AND THE REFRACTIVE INDEX 

To obtain equations for the absorption coeffi­
cient and the refractive index for a molecular crys­
tal, we use Eq. (1.10) to compute the average value 
of the electric moment (per unit volume of the 
crystal ) induced in region G by the light wave 

d (E 0•d)2N0wQ [( "'~- w") + i (·r;2) (wQ + w)j 

P,,= (w~-w2)'+(y,2) 2 (wQ+w)' (3 · 1) 

x exp[-A·r+i(Q·r+<JJi)J+compl. conj. 

where N0 is the. number of molecules per unit 
volume. 

In finding the approximate solution (1.10) of 
Eq. (1.5), we have taken account only of those 
states that correspond to a definite internal mo­
lecular excitation. The absorption of light, when 
this state is excited, does not depend on the exist­
ence of other molecular levels having some other 
energy. However, these states introduce an addi­
tional term {Eo} in the real part of the dielectric 
permittivity tensor: {Eo} is relatively insensitive 
to frequency. For simplicity we shall assume that 
Eo is a scalar. Then, the total electric moment 
produced in the crystal can be written in the form 

p p Eo -1 E 
=ex+~ , (3.2) 

where Pex is defined by Eq. (3.1) 
An electromagnetic wave which propagates in 

the crystal must satisfy the equations 

curl!E=-Hfc, curlH=Dfc, divD=O, divH=O, 

D = E + 4.rP. (3.3) 

We seek a plane-wave solution for these equations, 
assuming that E, H, and P are proportional: 

e-Ar exp [i (Q•r- wt)], Q = ·~ p. s, A = ~ x s, 

where s is a unit vector in the direction of propa­
gation of the wave. From the above it is easy to 
obtain the relation 

(3.4) 

We now orient the coordinate system x:yz in such 
a way that the x axis lies along the equilibrium 
direction of the induced electric moment of each 
molecule (in our crystal all molecules have the 
same orientation); thus d = { d, 0, 0} . 

If the electric field of the light wave is parallel 
to the x axis, P is collinear with E; then, from 
Eq. (3.3) it follows that E and D are also collin­
ear and, consequently, that s is perpendicular to 
E. Substituting Eq. (3.2) in Eq. (3.4) and separating 

real and imaginary parts, we have 

2•1 " - 2-r: (e'/m) fN o·: --· B (<d), 
'·.n ·xx - (wq + w) [(wq -- w)" + ~·'. ·1] (3 .6) 

where A ( w ) is the real part and B ( w ) the imag­
inary part of the dielectric permittivity. In obtain­
ing (3.5) and (3.6) we have expressed d2 in terms 
of the oscillator strength f, corresponding to the 
internal molecular transition, using the relation 
d2 = e2tif/2mwQ where m is the mass of the elec­
tron. The other two principle elements of the re­
fractive-index tensor and the absorption tensor are 

In Eq. (3.5) and (3.6) the frequency WQ is a func­
tion of the refractive index 

wq = w0 + i [cos ( ; l' s 1 • a) - I J , (3. 7) 

where s 1 is a unit vector perpendicular to the x 
axis; hence, in the region w ~ w0 the second term 
in Eq. (3. 7)" can be of some importance in (3.5) and 
(3 .6). In this frequency region these equations can, 
in general, lead to the appearance of several values 
of Mh at the same frequency. 

This situation has already been noted by Pekar, 
Ginzburg,2 and Agranovich and Rukhadze.3 In ref­
erences 1 to 3, however, absorption was not taken 
into account, and it was assumed that J.t can take 
on very large values; this tends to overemphasize 
the role of spatial dispersion. Actually, as has 
been shown by measurements carried out by Obrei­
mov, Prikhot'ko and their colleagues, 8 at low tem­
peratures, where the absorption bands are relatively 
narrow, tl1e refractive index for molecular crystals 
rarely exceeds 10. With J.t ~ 10, the ratio 
( wJ,ta/ c ) 2 ~ 10-3 so that Eq. (3. 7) can be replaced 
by the approximate expression 

wq = W0 - 1/ 4-r: (wp.ajc)~. 

In this case 

A ~ 4rr (e2 jm) fN 0 fw0 -"'- -r (tJ.waj2c)2] 
(w)- 8 0 + (w0 +w){(co0-w--r[fJ.wa;2c]')"+Y2/4}' 

B ( ) _ 2rr (e2 jm) fN 0 y (co) 
W - (w0 +co) {(co0 -"' ·- 't' [fJ.<UUi:!c]") 2 + Y214}' 

Now, assuming that in molecular crystals the ma­
jority of absorption bands correspond to excitation 
of excitons of negative effective mass 

(3.8) 

we can make a fairly accurate determination of the 
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absorption coefficient K and the refractive index 
fJ. using the formulas 

•L = 2-'J, [A 0 __ L VAz + B 2J'f, 
I j 0 (I ' 

x = 2-':, [-A0 +VA~+ Bgl''', 
where 

(3.9) 

(3.5a) 

(3.6a) 

The inequality (3. 8) is not satisfied at very low 
temperatures for a small frequency region at the 
long-wave edge of the absorption band; this region 
corresponds to excitation of excitons with positive 
effective mass (cf. Fig. 3). In this region Eq. (3.9) 
cannot be used; to compute fJ. and K it is neces­
sary to take account of the second term of Eq. (3. 7). 
However, when the temperature increases, the value 
of y ( w0 ) increases rapidly even in bands which 
correspond to the excitation of excitons with posi­
tive effective mass. In this case Eq. (3.8) is satis­
fied and Eq. (3 .9) can be used for all frequencies. 
True absorption (energy dissipation) occurs only 
in the frequency region in which B ( w) is differ­
ent from zero. As follows from Eqs. (3.5) and (3.6) 
this region of true absorption coincides with the 
frequency region in which y ( w ) is different from 
zero. Frequency regions in which B ( w ) = 0 are 
called transparent regions. If A0 ( w ) > 0 in the 
transparent regions, from Eq. (3.9) we have K = 0, 
fJ. = ~ , i.e., the light wave is not attenuated in 
passage through the material. 

If A0 ( w) < 0, from Eq. (3.9) we have fJ. = 0 
and K = ,j - A0 • 

It follows from Eq. (3.5a) that when y ( w) = 0 
the condition A ( w) < 0 is satisfied for frequen­
cies which satisfy the relation 

< < + 41te2/N0/m 
w0 w No , 

E0 (w+w0 ) (3.10) 

where Eo is the value of the dielectric constant in 
regions far from the absorption band. If the fre­
quencies are measured in reciprocal centimeters 
[ v] the relation is (3 .10) can be written in the form 

e2/No 
[vo] < [v] < [vo] + 27tc2Eo [vo] m . 

Taking N0 = 4 x 1021 , f = 0.2, [ v) = 25,000 em - 1 

and Eo= 2, we have 

e2jN 0/2rrc2s0 fv0 ] m = 73 em - 1• 

In view of the nature of the dependence of y on w 
(Fig. 3), it is easy to show that in the region y ( w) 

= 0 the condition in (3.2) is satisfied only at very 

low temperatures and at the high-frequency side 
of the absorption band, which corresponds to exci­
ton zones with negative effective mass because the 
frequencies of the limiting rotational oscillations 
are usually less than 100 em - 1 and the true absorp­
tion falls off sharply on the high-frequency side. As 
the temperature is raised, the absorption band ex­
pands and it is impossible to satisfy the condition 
y = 0 and (3 .10) simultaneously. If the absorption 
corresponds to the excitation of excitons of positive 
effective mass the absorption bands have a consid­
erably greater extent on the high-frequency side of 
w0 even at very low temperatures; thus, the con­
dition y ( w) = 0 and (3 .12) are not satisfied as a 
rule. 

If (3 .10) is satisfied, total reflection obtains at 
normal incidence of the light on the surface of a 
thick crystal. In this case, even though there is 
no true absorption, the light wave is attenuated 
rapidly inside the crystal. At small crystal thick­
nesses, when zwK/c < 1, part of the light wave 
passes through the crystal. Since the absorption 
coefficient is usually deduced from the attenuation 
of light which passes through a layer of material, 
the effect indicated above [total or partial reflec­
tion of light in the frequency regions which satisfy 
a (3 .10)) may introduce considerable distortion 
into the measurements. 

As has been noted above, if the condition 
y ( w) = 0 and (3 .10) are both satisfied, the index 
of refraction fJ. ( w ) = 0. Thus, a measurement of 
the index of refraction on the shortwave side of the 
absorption band can give evidence as to the exist­
ence of the total reflection effect noted above. Such 
measurements can be used to determine the need 
for introducing corrections in the measurements 
of absorption made by the transmission method.* 

We may note further that at frequencies for 
which the dielectric permittivity (3.5) vanishes in 
the transparency region, the induction D also van­
ishes identically. In this case, Maxwell's equations 
(3.3) allow the existence of longitudinal electric 
waves in the crystal ( H = 0, curl E = 0 ). The 
condition E = A ( w ) = 0 can be satisfied at low 
temperatures on the short-wave side of the ab­
sorption band; this is the region of excitation of 
excitons of negative effective mass. 
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