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The passage of high-energy muons through thick layers of matter is studied with account of 
ionization losses, bremsstrahlung, pair production, and "star" production. The energy loss 
distributions are taken into account for the last three processes. It is shown that taking ac­
count of the distribution functions leads to a smaller muon flux at sea level than the calcula­
tion on the basis of mean energy losses. 

l. The passage of muons through thick layers of 
matter is related to the characteristics of nuclear 
interactions of high-energy particles. We are thus 
able to state that in a nuclear interaction most of 
the primary energy is carried away by a nucleon. 1•2 

The importance of this conclusion increases the 
interest of the present problem, since the energy 
spectrum of high-energy muons ( ~ 1011 ev) can 
be obtained only by measuring the dependence of 
muon intensity on depth underground, followed by 
a calculation based on a specific form of the range­
energy relation for muons, which has been calcu­
lated in a number of papers. In his fundamental 
paper George3 did not use the most accurate cross 
section obtainable for some of the processes that 
accompany the passage of muons through matter; 
moreover, he used mean energy losses instead of 
basing the calculation on distribution functions. 
The methods used by Belen'kii4 and by Mando and 
Sona, 5 which take only bremsstrahlung into account 
in addition to ionization losses, are applicable only 
to not very high energies < 1011 ev. In the present 
work we consider the passage of both low- and 
high-energy muons through matter, taking account 
of all known forms of muon interactions and energy­
loss fluctuations. 

2. It is convenient to divide interactions of rela­
tivistic muons into processes that result in continu­
ous energy losses and others that result in infre­
quent large energy losses. The first type is rep­
resented by ionization losses (including Cerenkov 
radiation), while the second type includes brems­
strahlung, the direct production of electron-positron 
pairs, and collisions that result in the production 
of nuclear-interacting particles (which we shall 
call nuclear processes). In accordance with this 
division, we shall solve our problem in an approxi­
mation that takes into account the distribution of 
losses in only the second type of processes. Ioni-

zation losses will always be assumed equal to their 
mean value. 

Following these preliminary remarks we turn to 
the equations for energy losses incurred in differ­
ent processes by fast particles bearing the charge 
e. Ionization losses, with thickness measured in 
g/ em 2, are described by (see reference 6) 

_ ~~f!! _ 2n.NZ ~-] E1m2c2Z 
dx - A me' n 'h2e'NA ' 

(1) 

where N is Avogadro's number, m is the electron 
mass, while Z and A are the charge and atomic 
weight of the matter, which will be taken as 10 and 
20 in our numerical calculations. Strictly speaking, 
Eq. (1) describes ionization losses subject to the 
condition that the o -electron energy is E1 « E, 
where E is the muon energy. However, since E1 

is in the logarithm, which is on the order of 30 or 
40 in the energy region of greatest interest for us, 
we can replace E1 by E with an error of about 
5%. As we shall see, all other cross sections ex­
cept nuclear losses are taken with the same degree 
of error. Nuclear losses introduce the principal 
uncertainty. Equation (1) can conveniently be 
written as* 

- dEt / dx = a+ b ln (£Mev/ 1 000), 

a= 2.1 Mev•cm2/g, b = 0.077 Mev·cm2/g. (2) 

Ionization losses depend only slightly on energy and 
will hereafter be regarded as constant. Since we 
are interested in the passage of particles with en­
ergies above some Emin. we average (2) over the 
energy spectrum, which we assume to be repre­
sented by a power law with the exponent ( y + 1 ) : 

dx en /"' 

.• dE 
~ . d/ £-(y+J)d£ ~- £-(y+I)d£. 

E mm l:min 

(3) 

*Here and hereafter energies will be expressed in Mev. 
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When E > 104 only very slight dependence on y 
is exhibited by dEi ldx, which can be represented 
by 

dE; £min 
- dX = a+ bIn 1000 . (4) 

The effective bremsstrahlung cross section is 
known to depend on the parameter 

o = 1oo fLC" ~ z-''· · 
E E-E' (5) 

where E' is the energy of the emitted photon and 
J.1. is the muon mass (see references 4 and 7, for 
example). In the limiting cases o » 1 (no screen­
ing) and o « 1 ( complete screening ) the differ­
ential cross section CfJr ( E, v), where v = E' IE, 
is given analytically by 

N ( )2 m(ll(£ v) dv = 4~ - Z2r2 1 ..!!!.__ 
Tr ' A e \ fL I 

x {[1 + (1-v)2 - ~ (1-v) J 

x In(~ 183Z-'i,) + ~(1-v) r~ 

( complete screening) and 

m,r2> (E, ) d 16 N z2 " ( nz )\2 ( 3 v , 1- v ) T v v = - -~ r· 1 - - -;- --
3A e,fL \4 V 

[ ( 12 1 - v E ) 1 ] 
X In -5- -v- fLc2z'l, - 2 dv 

(no screening) ; here 

~ = 1/137, r, = e2jmc2 • 

(6) 

(7) 

For our further calculations it will be conve­
nient to introduce the meson radiation unit of length 
defined by 

_1_ = 4~ !!_ Z2r2 (!!!.__ \) 2 ln (\ J:.... 183Z-'i•). 
t"" A e fL m ; (8) 

In the present case this radiation length is equal to 
4.5 x 105 glcm2• These units can be used to write 
(6) and (7) with good accuracy as follows: 

cp~O(£, v) = ljv, (9) 

cp~2>(E, v)= 0.3(-}v+ 1 --;v)[In £(1 ;;-v) -5]. (10) 

We shall now determine the range of applicabil­
ity of these equations. For this purpose we esti­
mate the average value of the factor E' I ( E - E'), 
using the distribution (9), which diverges when the 
average is taken over the interval 0 < E' < E, so 
that (6) and (7) cannot be used for very large energy 
losses. The average must therefore be taken over 
the interval 0 < E' < KE, where K is close to but 
not equal to unity. E' I ( E - E') exhibits very weak 
(logarithmic ) dependence on K. Thus when K = 
0.9 we have E' I( E- E') ,.. 1 and when K = 0.99 

we have E' I( E- E') "" 3. We can therefore use 
(9) when E » JJ.c2z-1/J ,.. 104 z-113 and (10) when 
E « 104 z-113• For a rough estimate in the inter­
mediate region E ,.. 104 z-1/3 we can interpolate 
the cross section assuming that for Z = 10 it is 
represented by (9) in the entire region E > 104 

and by (10) when E < 104• From (9) we easily 
obtain the average energy loss in the region E 
> 104: 

- dE,jdx = 2.2 ·I o- 6£ cm21 g. (11) 

We shall now consider direct pair production. 
According to Bhabha8 the differential cross section 
CfJp ( E, v) differs in four energy regions as follows: 

56 N dv 
'fp(E,v)dv=-9 -(~Zr.)2 -A f(E, v)-, (12) 

1't v 

where 

f 1 = In (k 1Ejmc2 ) In (k~mfvp.), 2mc2f E < v < 2mc2/ E~Z'/, , 

f 2 = In (k2~Z' 1·) In (k'2m/r1.v), 2mc2/ E~Z'l, < v < mjr1., 

fa = 9/1 (m/rJ.v)2 ln (k3(J.V/~Z'J, m), m/rJ. < v < 2mEf~Z''• p.2c2 • 

f 4 = 9/ 7 (mvrw)2 1n (kJE/p.c2 ), 2mEf~Z'i. p.2c2 < v < 1, (13) 

where all k are of the order of unity but their 
exact values are unknown. Continuity of the dif­
ferential cross sections at the boundaries between 
the intervals is sati-sfied when k1 = Y2, kJ. = 3, 
k2 = k3 = 1, k2 = 3, k4 = 2. In radiation-lengths we 
obtain 

cp<~>(E, v) dv=- 16 [In v2 + (4.3 +In£) In v 

--~ 4.3 In£] dvjv, 

cp< 2~(£, v)dv =- (280 + 64 In v) dvjv, 

1-<~>(E, v)dv c= (0.0045 + 0.0005 In v) dvjv", 

cp<~>(E, v)dv = O.OOOSin(E/50) dvjva. 

(14) 

(15) 

(16) 

(17) 

Equations (14) to (17) apply to the same energy 
intervals as (13). Multiplying by v and integrat­
ing over these intervals, we -easily obtain the en­
ergy losses corresponding to the functions cp~1 -4.) 
Table I shows these energy losses expressed in 
terms of 10-6 E cm2lg for the different intervals 
representing four different dE~i) ldx. 

TABLE I 

I r.-10' I 1o• 1 6-1o• 1 10' 

-dE~>;dx 0.3 0.2 0.1 -
--dE'}> jdx 1.7 1.4 1.4 1.4 
- dE~> jdx 0.8 1.0 1.0 1.0 
- dE~4 ) fdx 0.1 0.02 - -
4, (i). 

-- l.dEp ;dx 
i-1 
= -dEP,'dx 2.9 2.6 2.5 2.4 
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The direct production of nuclear-interacting 
particles by muons can be treated consistently as 
their creation by virtual photons.3•9 A calculation 
by the method of Weizsacker and Williams yields 
the following cross section for the production of a 
"star" or electron-nuclear shower with total en­
ergy in the interval E', E' + dE': 

q;n(E, E')dE'= 2: N~y(E')df,'ln ;, , (18) 

where ay ( E') is the total cross section for the 
production of "stars" and showers by a gamma 
quantum with energy E'. A somewhat more exact 
calculation9 leads to the analogous expression 

?n (E, E') dE'.::::::: 2: N In fJ.:" cry (E') dJ,' (19) 

The different forms of the logarithm in (18) and 
(19) do not represent an essential difference be­
tween the two expressions for the following rea­
sons. The first and less important reason is that 
in reference 9 the entire calculation was performed 
with accuracy to within a logarithmic factor of the 
order of unity. The indeterminacy of the cross sec­
tion ay ( E') is the second and decisive considera­
tion in estimating the accuracy. At sufficiently 
high energies ( E' > 1000) this cross section is 
usually taken as constant, although this hypothesis 
is certainly not confirmed by data on ay ( E') at 
lower energies (see reference 10, for example). 
Since we do not possess experimental data on the 
energy·dependence of this cross section we can 
only compare (18) and (19) with data on the pro­
duction of showers and "stars" by muons. How­
ever the experimental data are not accurate enough 
to permit a distinction between the two formulas 
with ay ( E') assumed constant. Following George3 

and Kessler and Maz 11 we assume ay ( E') to have 
the constant value d x 10-28 cm2 per nucleon, with 
the constant d being varied in the numerical com­
putations. Thus by means of (18) and (19) we write 
the cross section in radiation lengths as follows: 

( In (1/v) 
'finE, v)dv =0.13d--dv v 

or 
(E d In (E/[J.c2) 

tf>n , v) v =0.13d--- dv. v 

It follows that the mean energy loss is* 

- dEnfdx = 0.13d·£10-6 cm2/g 

or 

(20) 

(21) 

(22) 

*We shall not consider the production of penetrating pairs 
separately (as was done by George), because the most accurate 
experiments have shown that this process is only a special 
case of shower production by muons. 12 

- dEnfdx = 0.13dE In (Ejp.c2) 10-6 cm2/g. (23) 

3. To describe the passage of muons through 
matter, we shall now set up the kinetic equation. 
It is convenient to introduce the critical energy 
EJJ., which represents the ionization losses per 
radiation length. From (2) and (4) we obtain 
EJJ. = 1.0 x 106, 1.0 x 106 and 1.2 x 106 for 
Emin = 104, 105, and 106• Using the notation 
EJJ.tfJ. = y, we easily arrive at an equation to de­
scribe the muon spectrum 1r ( E, y ) by analogy 
with the kinetic equations of ordinary cascade 
theory: 

1 

arc~; u>_ iJ"~£ u> = _ £1(1. ~[r-<E. y)rp(E. v> 
0 

- 1~v~(1.:v' YJ cr(1.:v' v)]dv, (24) 

where cp = CfJr + CfJp + CfJn. 
Assuming that for y = 0 the spectrum is rep­

resented by the power function 

"(E' 0) = CE-<Y+I)' (25) 

we first solve (24) for small depths, when y « E. 
Substituting the solution without the right member, 
1r0 ( E, y) = C/ ( E + y) y+t, into the right member of 
(24), we obtain 

orcjiJy- or-joE = cp (E, y); (26) 
1 

q;(E, y) =- :il- ~[rc 0 (£, y)cp(E, v) 
0 

We shall seek a solution in the form 

rc (E, Y) = rco (£, y) + 1t1 (E, Y) 

subject to the initial conditions (25) and 1r1 ( E, 0) 
= 0. 1r1 satisfies (26) when 1r is replaced by 1r1• 

The modified equation is easily solved by means 
of the substitutions E + y = u, E- y = w. After 
some simple transformations we obtain 

E+y 
__ 1 \ (E + y + w E + y - u;) d 

" 1 - 2 ) cp 2 ' 2 w 
E-y 

I 

= _ __!.... \ l2cp {£, u) y _ (1 - u)Y2Y+I [(E + _ v)-Y 
2£il- J \E+y)Y+l yv y y 

·o 

- (£ + y)-Y) cp (1.: v , v )} dv. (28) 

An expansion of ( E + y - yv ) -y in powers of 
yv/( E + y) gives 

1 

7t1 =- Y qcp(E, v)-(1-v)Ycp(_E__, v) 
Ei£{£+y)Y+lJ I 1-v 

0 

X [1 +yviy++/) + ... ]Jdv. (29) 
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The method used here is valid when the condi­
tion 1r1 « 1r0 is satisfied, for which it is sufficient 
that 

y <S=" e:!-< (30) 

(or til « 1). These conditions are both sufficient 
and necessary, since when y ~ Ell it can be shown 
that 1r1 ~ 1r0, which makes the method entirely un­
suitable. It follows from (30) that in calculating 1r1 

we can limit ourselves to the first term in the ex­
pansion (29). 

4. In this section we obtain a solution for E > 
Ell, for which purpose the expressions for the cross 
sections cp must be simplified so that they depend 
only on the ratio v. When E > Ell, the cross section 
for pair production is then approximated with good 
accuracy ( ~ 1%). In this approximation we can 
assume 

cp~ = cr<~= o; 
(31) 

tpp = rp~2> for 0 < v < mf11., 9P = Cf~3> for m/p. < v < 1. 

When (9) and (18) are used as cross sections of the 
other processes, (24) becomes 

l 

iht (£, y) a""' (E, y) 
----ay-- --riE~ 

1 " [ 1 ( E )] =-€-~ -r.:(E,y)- 1 _v-r.:i11 _v' Y cp(v)dv. (32) 
!-< 0 

We shall use Snyder's method13 to obtain a solu­
tion, which will be sought in the form 

-r.:(£, y)=Cexp{f..(j)l'"}F(£, j). (33) 

A Mellin transformation in the variable E gives 

--8 t-ioo 

X \ r (- r) r (y + r +1) K ( ) (_!l._ )-<r+y+l) 
.) l'(y + 1) I· r e dr· (34) 

-8-i.:o 1-' 

where o ~ 0, r is the gamma function, and K ( y, r ) 
satisfies the recursion relation 

rK (y, r-1) 
K (j, r) = A(y+r)-A(y) ' 

l 

A (x)= ~ fl - ( 1- v)xl cp(v)dv, K(T,O)= 1. 
(35) 

0 

When E/ Ell > 1 we can close the contour with an 
arc of infinitely large radius and calculate (34) by 
the method of residues: 

(36) 

Comparing (36) and (33) with (28) and noting that 
when til - 0 and Ell /E - 0 (33) and (28) must 
coincide, we obtain ;\ ( y) = -A ( y). It can be 

TABLE II 

I 
f' 

I d=l I d=5 

-o.-,l-1 -o.-6 _!_J._o_j_o.-3 --o-.G---;i,..---1-.o-

y=2 

1251 E = '/• 1.1 
11.2 I 1.4 1.1 1.6 

:E = 1 /a 1.1 ' 1.25 1.5 
i 1.15 I 1.351 

1.7 

y=3 

;£='/2 1.2 ! 1. 7 

I 
2.7 [1.~ I ~- ~ I 4.0 

'E = 1 /s 1.:3 [i. 9 2.9 I L.l 12.2 I 4.8 
I 

I 
I , 

I i I -

shown that our functions cp make (36) converge 
in the entire region E > Ell. 

5. It is useful to compare the results obtained 
when meson-intensity fluctuations at different depths 
are taken into account by means of distribution 
functions, with the results based on mean energy 
losses. We find the ratio between the number 
N ( E, t1~) of mesons with energies above E at 
depth ti-L, obtained by means of (33) and (36), 
and the analogous number N s ( E, til), computed 
neglecting distribution functions. We use the fact 
that 

Ns (E, t,,) = ~ F (E. j)dE, (37) ,,., 

where Et is the minimum energy which a muon 
can expend in passing through the depth til wh~n 
mean energy losses are used and the final muon 
energy is E. Et is obtained from 

r, 
t,, = ~ [s.,_ -;-

1: 

We finally obtain 

dEv dE ] -1 --- +- £ll,n d£. dt.,_ ~ 
(38) 

N (E, lv.) 

N5 (E, I'") 
___ ____:_n::::.=..::...O -------- (39) 

"" en y (- 1)n~ K (j, n) (e:,,JE,)" 
-'-I y+n 
n=O 

Numerical values of this ratio for E = 2Eil and 
3Eil are given ifi Table II. 

Table II shows that N/Ns depends only slightly 
on Ell /E and d and that it is greater than unity 
(see also the general formula (39)). This indicates 
that a measured intensity at a given depth repre­
sents a smaller muon flux than is obtained by means 
of a calculation neglecting fluctuations. 

In conclusion the authors wish to thank G. T. 
Zatsepin for a discussion of the questions which 
were touched on in this paper and Z. S. Maksimova 
for the numerical computations. 
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