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where we have set k1a 1 + k2a2 + k3a3 = k1a cos J. + 
k sin J. cos cp. We see that the factor obtained is 
similar. It must be noted that after the changes 
of variables q~ = qz- qi/2E1 or q~ = qz- ql/2E, 
for bremsstrahlung and pair production, respec­
tively, the factors (4) and (5) differ somewhat, but 
not to any important degree if o » qi/2El> o « 
qi/2E2, and o « qi/2E_, o « qi/2E+ for the 
two respective cases. 

We remark that when one takes into account 
thermal vibrations in the interference factor of 
the _£_adiation these_make the contribution2 q1 < 
h/ ( u2) 112, where u2 is the mean square deviation 
of the atoms from their equilibrium positions. Fur­
thermore, on inserting the factor (5) under the in­
tegral in Eq. (2) (or in the corresponding formula 
for the case of pair production) we arrive at a 
formula for radiation or pair production in colli­
sions with a chain of atoms obtained by the impact­
parameter method (when thermal vibrations are 
included there is an additional factor exp {- ( k2 + 
ki)u2} ). 
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REFERENCE 1 treated the processes of diffrac­
tive interaction of deuterons with nuclei. Obviously, 
diffraction processes (scattering, disintegration, 
and stripping) can also occur in the collision of 
other loosely bound light nuclei with heavy nuclei. 
The possible occurrence of diffraction phenomena 
must be taken into account in studying the interac­
tion with heavy nuclei of beams of light nuclei 
which have been accelerated to high energy. 

There are several light nuclei whose binding 
energies against two-particle breakup are small. 
Thus, for example, Li6 may be regarded as being 
made up of a deuteron and an a particle (with 
binding energy E = 1.53 Mev), Li7 is a triton 
plus an a particle ( E = 2.52 Mev), Be9 is Be8 

plus a neutron ( E = 1.64 Mev), B10 is Li6 plus 
an a particle ( E = 4.36 Mev), etc. Diffraction 
processes in the interaction with heavy nuclei of 

If we now compare these formulas with the for­
mulas for the inteference radiation obtained by per­
turbation theory [Eqs. (41) and (42) of reference 1], 
we see that they are completely identical. An anal­
ogous argument can also be carried through for the 
case of collisions of charged particles with atomic 
electrons (ionization losses). Here it can be 
shown that the exact quantum mechanical formulas 
go over into those obtained by the impact-param­
eter method when they are expanded in powers of 
the parameter q1 R, where R is the radius of the 
atom and q1 is the change of momentum in the 
direction perpendicular to the motion. 
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light nuclei which are made up of two relatively 
weakly bound particles can obviously be described 
in the same way as the diffractive interaction of 
deuterons with nuclei. However, the results of 
reference 1 cannot be used without change, since 
it was assumed in reference 1 that the deuteron 
radius Rd is considerably smaller than the nu­
clear radius R. 

In the present note we calculate the total cross 
sections for various processes of diffractive inter­
action of a deuteron with a black nucleus, assum­
ing an arbitrary ratio of the radii Rd and R. The 
Coulomb interaction is neglected. 

To simplify the calculations, the wave function 
of the deuteron ground state is chosen to be Gaus­
sian 

(1) 

in which the constants are determined from the 

conditions J cp~ ( r) dr = 1 and J rep~ ( r) dr =Rd. 

Using the general formulas of reference 1, one 
easily obtains the following expressions for the 
total cross section for all processes at, the cross 
section an for stripping off a neutron, the cross 
section <Jp for stripping off a proton, and the 
elastic scattering cross section ae: 
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at = 47rR~ { 1 - ~ e-~'fqJi ~~) d~} , 

R21l 2r "/ Ji<~) dt} un=up=l'r \- 1~e-~q--r-_,, 
00 

a, = 21tR2 ~ 12 (C) CdC, 
0 

where we have used the notation q = 4R/h Rd, 
and the function I ( t) which enters into ae is 
defined by 

(2) 

I(q = 

r 1-+ }>p{-q'(oo,HVI-<''{n'<j>)'}d<j>,C <I 

l ~-arc sf~ (II~~ exp{ -q2( ~ coscjl-V 1-~2sin2cjl)2} 

- exp{~q2(~ coscJI+ V1-•2sin2cjl)2}] dcji,C> 1. 

The cross sections for diffraction breakup ad and 
absorption of the deuteron aa can be found from 
the relations 1 

Figure 1 shows the dependence of the various 
cross sections on the ratio R/Rd. 
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FIG. 1 

(3) 

In the limit of large values of the parameter q 
( q » 1), the following asymptotic formulas are 
valid: 

Oa = 1tR2 - 1tRRd J2, 

Ot = 21tR2 + 1tRRd· 
(4) 

We note that for R/Rd"' 2, the cross section val­
ues given by the asymptotic formulas (4) areal­
ready practically the same as the exact values 
found by numerical integration. 

Relations (2) and (3) also describe processes of 
diffractive interaction of weakly bound light nuclei 
with heavy nuclei if Rd is interpreted to be the 
average distance between the constituents of the 
light nucleus. 

The region R/Rd < 1 in Fig. 1 corresponds to 

the process of interaction of 71' mesons (or nu­
cleons) with deuterons at high energies, to which 
the diffraction model is also applicable. R should 
then be interpreted to be the radius of interaction 
between the 1r meson and the nucleon. According 
to reference 2, for E7r = 1.4 Bev this radius is 
R = 1.18 x 10-13 em, i.e., R/Rd R; 0.5. Assuming 
that q « 1, one can get the following approximate 
formulas: 

Cln = Op = -rtR2 (1- q2 I 4), Ca = 114 7rR2q2, 

Oj = 47rR2 (1- q2 I 8). (5) 

The cross section ae corresponds to elastic 
scattering of the 71' meson by the deuteron, ad 
to scattering of the 71' meson accompanied by 
breakup of the deuteron, an and ap to processes 
of inelastic interaction of the 71' meson w:Kh the 
neutron or the proton in the deuteron, and aa to 
the process of inelastic interaction of the 1r me­
son with the neutron and proton. As a result of 
the diffraction the total interaction cross section 
of a fast 1r -meson with a deuteron is less than 
the sum of the total cross sections for interaction 
of the 1r meson with a free neutron and proton 
(eclipse effect3•4 ). The diffraction also has the 
effect that the scattering of the 1r meson by the 
deuteron occurs mostly with simultaneous breakup 
of the deuteron (ad » ae). 
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FIG. 2 

It should be pointed out that the_ total cross sec­
tions in the region R < Rd are strongly dependent 
on the choice of the wave function cp 0 ( r) of the 
deuteron ground state. Figure 2 shows the total 
cross section at for two choices of cp0 ( r). 
Curve 1 is for the Gaussian of Eq. (1) and curve 2 
for cp0 ( r) = ,; a./271' e-a.r /r, where a. = 1/2Rd. 
On the other hand, in the region R > Rct the cross 
section values are practically independent of the 
form of the wave function of the deuteron ground 
state. 

1 A. I. Akhiezer and A. G. Sitenko, J. Exptl. 
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IN 1926 Kochin1•2 investigated the break-up of an 
arbitrary hydrodynamic plane discontinuity. In 
doing this he made essential use of the fact that 
either a single shock wave or a single self-similar 
rarefaction wave can be propagated in each direc­
tion from the initial discontinuity. 

In magnetohydrodynamics a discontinuity breaks 
up, generally speaking, in a considerably more com­
plicated manner: up to three waves (shock waves 
or self-similar waves) can be propagated in each 
direction from the initial discontinuity. This is 
connected with the fact that in magnetohydrodynam­
ics there exist three different types of stable shock 
waves3 (fast and slow magnetoacoustic waves and 
magnetohydrodynamic waves) and two types of 
self-similar waves4 (fast and slow magnetoacous­
tic waves). Because the different speeds of propa­
gation, up to three waves of the types enumerated 
above may be propagated in each direction from 
the initial discontinuity. 

We note that the initial discontinuity is charac­
terized by seven parameters -the discontinuities 
in the density L:::..p, in the entropy t::..s, in the ve­
locity t::.. V and in the tangential component of the 
magnetic field t::..Ht. Since each wave is charac­
terized by one parameter, the initial discontinuity 
breaks up into seven waves, of which three are 
propagated to the left, three are propagated to the 
right and one - a contact discontinuity - remains 
stationary. As has been shown by Akhiezer et al., 3 

two waves of the same type move in such a way that 
the wave in the rear overtakes the wave in front. 

Therefore waves of three different types must be 
propagated in each direction: in front there will be 
the fast magnetoacoustic (shock or self-similar) 
wave, followed by the Alfven shock wave, and 
finally, the slow magnetoacoustic (shock or self­
similar) wave. 

One should have in mind the fact that the self­
similar wave is a rarefaction wave,4 while the 
shock wave is a compression wave. 5 

The problem now consists of choosing the am­
plitudes of these seven waves in such a way as to 
make a transition from the state to the left of the 
initial discontinuity to the state to the right of the 
initial discontinuity. For the sake of simplicity, 
we shall restrict ourselves to the case when the 
initial discontinuity is very small. Then all the 
secondary discontinuities will also be small. The 
relation between the discontinuities in the magneto­
hydrodynamic quantities in the self-similar and 
the shock waves (in the case of low intensity) is 
the same as between the amplitudes of the corre­
sponding linearized wave. We now state these re­
lations: 

(1) Magnetoacoustic waves (shock and self­
similar waves ) 

Ll~>vx = s (u± I p) Ll~>p, 

u~>Vt = - sHxHtU±Ll~>p 14r:p2 (u~- V~), 

Ll~>Ht = u~Htll~>p I p (u~- V~), 

where c is the speed of sound, Vt is the tangen­
tial component of the velocity of the liquid V, and 

V = H/lf 4<tp, u~ = + [V2 + c2 + lf(V2 + c2) 2 - 4c2V~]. 

The plus sign corresponds to the fast magneto­
acoustic wave, the minus sign corresponds to the 
slow one. For waves moving to the right E = + 1; 
for waves moving to the left E = - 1. The differ­
ence between the shock and the self-similar mag­
netoacoustic waves is that in the former the density 
increases, while in the latter it decreases. 

(2) Alfven shock waves 

Ll<;>vt = - ell~>Ht IV 4r:p, 

Ll<;>vx = Ll~>p = Ll<;>p = 0, Ll~)H~ = 0. 

(3) Contact discontinuity 

LlcVx = LlcVu = LlcVz = LlcP = l:lcH y = LlcHz = 0, 

LlcP = (aplas)p~s, Hx=f=O. 

The sum of the discontinuities of each magneto­
hydrodynamic quantity at the seven new waves is 
equal to the initial discontinuity. We thus obtain 
seven equations in seven unknowns, on solving 


