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hK is the momentum of the quantum. l = 1 corre
sponds to right-circular polarization (spin directed 
parallel to the motion ) and l = -1 to left-circular 
polarization (spin opposite to motion) of the y -ray 
quantum. 

In the case of a 71" meson at rest we get the fol
lowing expression for the decay probability: 

Here the upper sign is for decay occurring with the 
emission of a neutrino, and the lower sign is for de
cay with emission of an antineutrino. The notations 
used are: 

f -k2 q(1-cos26) + Q-K!J. k 
1- !" Q-K k -v "(O:-t> 

ll. 01t' j 

' k2 ) t~ =- {k!J. (1 -cos2 ~) ( K!J. + Q -!J.K!J. 

where hk:J..! is the momentum and hcKJ..! the energy 
of the J..! meson, hck07l" is the rest energy of the 
71" meson, (J is the angle between the directions of 
motion of the J..! meson and the y -ray quantum, 
and 

Q = (k~ + k~J/2k01t' q = (k~- k~Jf2k01t' 

"( = K!"- k!J. cos6. 

In the expression (2) for the decay probability 
the last three terms are due to parity nonconser
vation, i.e., the longitudinal polarizations of the 
J..! meson, the neutrino, and the y -ray quantum. 
If in Eq. (2) we carry out a summation over the 
directions of polarization of the J..! meson and 
the y -ray quantum, we get the well known expres
sion1 for the decay probability of the 71" meson. 

Summation only over the spin states of the J..! 

meson leads to the result of Bund and Ferreira.2 

To simplify the analysis of the formula (2) we 
suppose that the momentum of the J..! meson is 
very small ( close to zero); then the momenta of 
the y -ray quantum and the neutrino will be anti
parallel. In this limit ( kJ..! ---. 0 ) 

f1 = f4 = ko!J. (ko"- ko!J.) /2, (4) 
f2 = f:1 = 1/2ko!J.(ko" -ko!J.)cosfJ. 

where (J is the angle between the spin vector of 

the J..! meson and the direction of motion of the 
y -ray quantum. The analysis leads to the follow
ing results: 

(a) if the spin of the J..! meson is directed oppo
site to the motion of the y -ray quantum ( sJ..! = - 1 
and cos (J = -1 ), then the decay probability is dif
ferent from zero only in the case sv = 1 and l = 1, 
i.e., when the decay involves emission of a neutrino 
and the quantum emitted has right-circular polari
zation; 

(b) if the spin of the J..! meson is directed along 
the direction of motion of the y -ray quantum ( sJ..! 
= 1 ), then we must permit decay of the 71" meson 
with emission of an antineutrino ( sv = - 1 ) and a 
y -ray quantum with left-circular polarization 
( l = -1 ). We note that in this limit the probabili
ties of the two types of decay are equal. 

From the above it follows that if the 71" meson 
decays with emission of a neutrino, then for small 
momenta of the J..! meson its spin must make an 
angle close to 180° with the direction of the quan
tum. In the case of antineutrino decay this angle 
is close to zero. Obviously this conclusion can be 
checked by measurement of the J..t-'Y correlation. 

1 B. Ioffe and A. Rudik, Dokl. Akad. Nauk SSSR 
82, 359 (1952). W. A. Fry, Phys. Rev. 83, 1268 
(1951). T. Eguchi, Phys. Rev. 85, 943 (1952). 
H. Primakoff, Phys. Rev. 84, 1255 (1951). 

2 G. W. Bund and P. L. Ferreira, Nuovo cimento 
7' 246 (1958). 
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THE "second moment" was first introduced in 
a paper of Lane, Thomas, and Wigner1 as a quanti
tative criterion for the error committed when the 
nuclear Hamiltonian is replaced by the Hamiltonian 
of the shell model. 

Let H be the nuclear Hamiltonian and H0 the 
shell model Hamiltonian. Then H = Ho + H1, where 
H1 is an operator which gives rise to correlations 
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between single-particle states of the shell model. 
Further, let H<I>b = Eb<l>b, where the <I>b are 
Slater determinants describing the various nuclear 
states in the shell model. The wave function of the 
nucleus for energy E, which satisfies the equation 
Hif!E = ElfiE, can be represented as an expansion in 
the complete orthogonal function system <I>b: 

~E = ~ cb (£) wb. (1) 
b 

Let us assume that the state if!E corresponds to 
a state of the compound nucleus in the Bohr model, 
in which the wave functions in different channels do 
not interfere. This is equivalent to assuming that 
the phases of the coefficients Cb ( E ) are random 
(cf. reference 1 and 2). Thus the description of the 
state if!E in the Bohr model is incomplete, and the 
state can be characterized by means of a density 
matrix. In the state if!E, the average value of H0 

is 

(~;,, Ho~£) = b!Cb(E)/2 Eb. (2) 
b 

Since according to the assumptions of the model1 

the function I Cb (E) 12 has a maximum at Eb ~ E, * 
(3) 

Comparing (2),,and (3), we conclude that the state 
of the compour{d nucleus in the Bohr picture is a 
"mixed" state which can be characterized by the 
statistical matrix: 

Wbb=)Cb(E)I 2 , Ww=O, b=/=b', (4) 

where, according to (3) the nuclear energy E is 
the average energy of the system having the Hamil
tonian H0• 

In order to characterize the compound nuchms 
with excitation energy E by a temperature T (E), 
as was done by N. Bohr3 and Ya. I. Frenkel,4 it is 
sufficient to assume that 

! cb (E) )2 ~ exp (- Eb I kT), (5) 

where the nuclear temperature T is related to the 
total energy of excitation of the nucleus, E, by the 
equation of state of a Fermi gas at low temperature: 
E = aT2• 

On the basis of assumption (5) it is easy to de
termine the "second moment" of the model, 1 which, 
by definition, is equal to 

W2 (E)= h (Eb- E)2 1 Cb (E) /2 • 

b 
(6) 

Going over from a sum to an integral in (6) and 
using for the level density p ( Eb) the expression 
found by Landau, 5 

p (Eb) = ),-l (Eb) exp (S (Eb) I k), 

where S ( Eb) is the entropy of the nucleus on the 
shell model, and "A ( Eb) is a smoothly varying 
function, we get 

f 1 [S (Eb) Eb ] 
W2 (E) = ~). (Eb) (E- Eb)2 exp -k- - kT dEb. 

0 (7) 

Expanding the exponent in powers of ( E - Eb) and 
stopping at quadratic terms, we findt 

00 

\Y12 (E) = A~ (E- Eb) 2 exp [- (E- Eb)2 I .Q2 (E)] dEb, (8) 
0 

where 
00 

1/ A (E)= ~ exp [- (E- Eb)2 I .Q2 (E)] dEb, 

o .Q2 (E) = :a E''·· 

Performing the integration in (8), we find 

W2 (E) = 2 (1 ~ ~~x)) { 1 +CD (x)- ~~e-x'} , (9) 
X 

x=EfD.(E), CD(x)= ::;~e-t'dt. 
0 

If X> 1, 

W2 (E)= ,!:22 (E)I2. (10) 

Formulas (9) and (10) give the dependence of 
the "second moment" on the excitation energy E 
and the nucleon number A (a~ 0.07 A). 7 Thus, 
for a= 10 Mev-1 and E = 8 Mev, W (E) = 3.8 
Mev; if we take E = 16 Mev, W (E)= 10.8 Mev. 
It is interesting to note that the value found for the 
"second moment" for E = 16 Mev coincides with 
the value which had to be postulated in a paper of 
the authors8 in order to give a satisfactory descrip
tion of the parameters of the "giant resonance" in 
photonuclear reactions. 

A straightforward quantum-mechanical compu
tation of the second moment" has been made in 
several papers. In a paper of Vogt9 the value 
W ~ 4.5 Mev was found, and in a paper of Brown 
et al. 10 the value W ~ 7 Mev, etc. However none 
of the above-mentioned papers enables one to de
termine the value of the excitation energy cor
responding to their calculated values of the "sec
ond moment." This makes it difficult to give a 
quantitative comparison of the energy dependence 
of the "second moment" found in the present paper 
with the calculations of these earlier authors. 

*Relation (3) would be exact if the equation (tfrE, H,ifJE) 
= 0 were satisfied. 

tThe approximation in which relation (8) is valid is equiva
lent to the assumption that 

which was used in reference 6. 
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IN studies of radiative processes, use is made of 
ordinary perturbation theory, and also of the im
pact-parameter method ( Weizsiicker-Williams 
method). The opinion is sometimes expressed 
that the latter gives insufficiently accurate results.1 

But let us compare the results given by these 
methods. 

We consider deceleration radiation in collisions 
with atoms. 

Following Uberall1 we write the bremsstrahlung 
cross section in the form 

{ 
1 qz + q3_ (e- e2) f2e,e2 

X - - ____:::___---=----::-.,-
(q2- q3_/2e1) 2 [(qz- q3_f2e2)2 + 4iJ2q3_j'lz 

(1) 

(1 + ei3) q3_ + 2 } 

+ (q2 - q3_;2e,)[(q2 - q}_f2e2) 2+ 4il'q5_ ]'I• • 

Here E1o E2 are the initial and final energies of 
the electron, E is the energy of the photon (de
noted by k in reference 1 ), {j = E/2€1€2, n = m = 
c = 1. On the other hand, the impact-parameter 
method gives2•3 

(2) 

7 J. M. Blatt and V. F. Weisskopf, Theoretical 
Nuclear Physics, John Wiley and Sons, Inc., New 
York, 1952. 

8 v. M. Agranovich and V. S. Stavinskii, J. Exptl. 
Theoret. Phys. (U.S.S.R.) 34, 700 (1958), Soviet 
Phys. JETP 34 (7), 481 (1958). 

9 E. Vogt, Phys. Rev. 101, 1792 (1956). 
10 G. E. Brown and C. T. DeDominicis, Proc. 

Phys. Soc. A70, 668 (1957). 
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here k2 = k~ + k~ ( E is the energy of the photon ) . 
In Eq. (1) let us replace the variable qz by q~ = 
qz- ql/2E1 and expand the expression in square 
brackets in powers of ( ql /me )2: 

(3) 

Comparing Eqs. (3) and (2) we see that the first 
term of the expansion of the exact formula gives 
the result of the impact-parameter method (we 
have here q~ = k1, qi = k2 ), and the second term 
is only a correction if qi « 1. Consequently, 
Eq. (2) agrees with the exact formula (1) only in 
the region q]_ « 1 (which corresponds to values 
of the impact parameter larger than n/mc). A 
similar treatment can be given for pair production. 

Let us now turn our attention to radiation and 
pair production in periodic structures. In refer
ence 1 a problem of this sort is solved for a chain 
of atoms [Eqs. (33) and (23)]. These formulas dif
fer from the corresponding formulas for collisions 
with a single atom (for example, Eq. (1)) by the 
factor: 

which gives the effect of interference in radiation 
or pair production in collisions with a chain of 
atoms. It is easy to obtain analogous formulas 
by the impact-parameter method. To do this we 
set ri = ha in Eq. (4) of reference 2, where h 
is an integer and a is the direction vector of the 
chain of atoms. Integrating the crystalline factor 
with respect to l/J [Eq. (4) of reference 2] we get 


