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The influence of a non-uniform distribution of particles on the electron correlation energy 
is investigated. It is found that this influence is so large that the corresponding expressions 
obtained on the basis of the uniform distribution model1•2 are not valid for real systems. The 
principal part of the correlation energy of the electrons in the crystalline lattice (without 
consideration of interaction with the vibrations of the latter) has been found for high pres­
sures, low temperatures, and large values of the nuclear charge. Estimates are given for 
the correlation energy of uncompressed matter. 

1. INTRODUCTION 

IT is well known that in polyelectronic systems 
a very important role is assigned to long range 
(many particle) correlations. In the most syste­
matic form these correlations were studied in the 
recent work of Gell-Mann and Brueckner2 (see also 
reference 3), where the correlation energy of the 
electron gas was found in the region of high com­
pressions and low temperatures. 

It is necessary, however, to emphasize that 
calculations of electron correlations are usually 
carried out with the use of a uniform model which 
greatly simplifies the real situation. In this model 
the nuclei (or ions ) are replaced by a uniformly 
distributed positive background which guarantees 
the neutrality of the system as a whole. Such an 
approach completely ignores the atomistic struc­
ture of the positive charge: on the one hand the in­
homogeneity of the charge distribution associated, 
for example, with the crystalline structure of the 
material is not taken into account, and on the other 
hand considerations of processes with participa­
tion of phonons and also electron-nuclear and nu­
clear correlations are left out. 

The present work is devoted to consideration 
of the first of the enumerated factors, i.e., it con­
tains the generalization of the results of Gell-Mann 
and Brueckner in the case of a non-uniform (but 
specified) distribution of the nuclei. The self-con­
sistent potential .P ( x) corresponding to this situ­
ation, and the limiting Fermi momentum of the 
electron p0 (x) = [2M(E0 - .P(x)]1fi are functions 
of the coordinates ( E0 is the limiting energy). As 
will be shown below, the electron correlation en­
ergy reveals an extraordinarily strong sensitivity 
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to the presence of non-uniformities. Even in the 
regions of high compressions, where the distribu­
tion of electrons is non-uniform only in small de­
gree, a radical departure takes place from the 
results contained in reference 2. 

Consideration of the rest of the factors men­
tioned above (in the first place, the lattice vibra­
tions ) can also lead to a significant contribution 
to the correlation energy of the crystalline body. 
The role of nuclear and electron-nuclear correla­
tions is especially important in the plasma state 
where the radius and energy of the correlation are 
determined not by the electronic but by the nuclear 
mass and charge. These questions, however, re­
quire special consideration. 

The anomalous sensitivity just mentioned of the 
correlation toward non-uniformity of the system 
has a simple physical explanation and is accounted 
for in the final analysis by the fact that the principal 
contribution to the correlation energy is made by a 
narrow strip of phase space adjoining the Fermi 
surface. It is easy to find the latter from the uni­
form case: according to references 1 and 2, the 
principal term of the correlation energy has the 
form 

co 

oE=-~ \ ~~ dp,dp, 
16r.'~3a0 ) q4 J q2+ q (Pl + P2) 

PD 

with the conditions P1,2 < p0, I P1,2 + q I > Po· Here 
Q is the volume of the system, PD = (np0/a0 )112 

is the De bye momentum, a0 is the Bohr radius. 
If the condition 

(I) 

is satisfied then the region of integration over p1,2 

in the foregoing equation is actually narrow: 
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I P1,2 -Po I "' PD «Po· 
On the other hand, as was emphasized in refer-

ence 4, diffusion of the momentum distribution close 
to the Fermi surface is inevitably connected with the 
non-uniformity of the system, even if the system is 
a step function in the energy representation (the 
degenerate case). We introduce the characteristic 
"length of the non-uniformity" l over which p0 

changes by a significant amount, and which is de­
termined by the average value of p0/V'p0• Then, 
from the indeterminancy principle, we obtain the 
following expression for the diffusion referred to: 

op -- (1i. I lpo)'1• Po· 

The quantum fluctuations in potential energy in the 
stationary state must be identical in magnitude; 
that is, p0op/M ..... p~ox/lM, whence, with the help 
of opox ..... ·:n, the desired quantity is obtained. At 
some distance from the Fermi surface, this dis­
persion of the momentum is shown to be small, 
since there the distribution did not depend on the 
momentum; however, in the vicinity of Po an 
intermingling of filled and unfilled regions takes 
place and the form of the distribution in the vicin­
ity of I p - Po I ..... op is changed significantly (for 
details see reference 4 ). Upon satisfaction of the 
quasi-classical condition 

(II) 

this diffusion occupies the narrow band op « p0• 

It is important that fulfillment of the condition 
(II) is not at all sufficient that the non-uniformity 
have only a slight effect on the result. More 
stringent conditions must be satisfied: the magni­
tude of the quantum diffusion op must be much 
less than the width of the effective region of inte­
gration, i.e., in our case, PD· 

For clarification of the possibility of satisfy­
ing this condition, let us consider the case of 
strongly compressed matter where (see Sec. 4) 

Po (x)- (1i.Z'1• I R) (1 + (RZ'/, I Go) f (xI R) + ... ), 

and the case of uncompressed matter with a large 
nuclear charge Z, where5 

Po(X)- (1i.Z'1• I G0) tp (xZ'/, I ao). 

Here R is the radius of the neutral cell, x is 
the distance from its center (this distribution is 
repeated periodically throughout the other cells), 
f and cp are slowly varying functions. In both 
cases, the conditions (I) and (II) are satisfied and 

the "length of non-uniformity" l has the form* 

l ~aoz-'1'. 
It then follows that the condition op/pn « 1 is 
not only not satisfied, but for heavy nuclei the 
opposite condition 

oplpD- (ao/l)'/, ~ z'!, > } , 
is satisfied; this also testifies to the inapplicability 
of the uniform model. In what follows we shall for 
simplicity limit ourselves to ascertaining the asym­
ptotic form of the energy correlation for Z - oo, 

i.e., in addition to conditions (I) and (II), we shall 
consider the condition 

(III) 

to be satisfied. In the case of compressed matter 
in addition to (II) a more stringent condition 
:11/lpn « 1 is satisfied; however, for uncompressed 
matter, :11/lpn ..... 1. 

Finally, we note that the correlation energy is 
highly sensitive with respect to the temperature 
inasmuch as the latter, as also the non-uniformity, 
leads to a diffusion of the Fermi distribution. The 
Jimit below which we can use the relations for a 
degenerate gas is determined not by the tempera­
ture of the degeneracy kT0 ..... p5/2M but by the 
quantity PoPD /M « kT0• In this case it follows 
from condition (III) that in all regions of degeneracy 
op exceeds the width of the temperature diffusion 
and the effect of non-uniformity considered above 
takes the place. 

We used atomic units: e = :11 = M :;:: 1. 

2. PRELIMINARY REMARKS 

We proceed to a consideration of other compli­
cations associated with the transition to the non­
uniform case. In the non-uniform case it is nec­
essary to define more clearly the actual meaning 
of the correlation interaction. We shall consider 
as a correlation t that part of the interaction which 

*We note that in the case of strongly compressed matter 
(RZ'I:./a0 < 1, the pressure P ~ 108 x Z1% atmos), in addition 
to the expression for l written here, there are other parame­
ters of the dimensions of length (the radius of the cell R and 
also various combinations of R and l ). However, these 
parameters are connected with derivatives (or, what amounts 
to the same thing, with commutators4) of higher order than the 
first and upon satisfaction of condition (II) they play a rela­
tively unimportant role. An estimate shows that their role is 
significant only in the region RZ%/a0 < 1, P _$108Z5 atmos, 
which is relativistic for heavy atoms and is considered neither 
in reference 4 or in the present research. 

tStrictly speaking, we are talking about the so called 
strong correlation which appears in addition to the exchange 
correlation. 
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is not taken into account in the Hartree-Fock ap­
proximation ( HF A) and appears apart from the 
mean (self-consistent) interaction. The total 
energy of the system in the HFA has the form 
( p is the density of electrons, Pn is the density 
of nuclei) 

E = 3/ 10 (37t2)'1· ~ p'l•dx- 3f4 (3/7t)'l• ~ p'l•dx + { ~ l~x~~'l 
(2.1) 

X (p (x) p (x')- 2Zp (x) Pn (x') + Z2 Pn (x) Pn (x')) + t:.E. 

Here we have, respectively, the kinetic energy of 
the electrons, their exchange energy, the potential 
energy of interactions of the electrons with each 
other and with nuclei, and the energy of interaction 
of the nuclei. The last term, ~E, corresponds 
to the specific quantum corrections6 associated 
with a non-uniform system,* and upon satisfaction 
of the condition (II) reduces to the small quantity 

(1/a) ~ !(vp)2 1 rl dx. 

In the uniform case, Eq. (2.1) reduces to the 
first two terms wherein, upon satisfaction of the 
condition (I), the exchange term plays a small role. 
In view of this fact we can consider the electrons 
to be free in the case considered in the HFA. 
Therefore, we can compute the energy of the elec­
tron correlation with the help of perturbation the­
ory, expanding in a series of the Coulomb inter­
action and throwing away the first correction, 
which was already considered in the HF A. This 
was precisely the treatment of the problem given 
in reference 2. 

In the non-uniform case the HFA must appear 
as the zeroth approximation while the perturbation 
is the difference between the Coulombic and the 
self-consistent interaction of the electrons. Such 
an approach to the calculation of correlation ef­
fects was assumed in the work of M~ller and 
Plesset. 7 As the perturbation Hamiltonian in this 
method one must choose the expression 

k = 1/2h'l X;- Xj !-1 - h ~ foj (e) I X;-; l-1 (1- P) lj/0/ m de 
0 j 

.... ~. (2.2) + 1/ 2 .L..J [M (O;Oi, O;Oi)- M (O;Oi, OiO;)], 
ij 

where 1/Joj are single-particle wave functions of 
the fundamental configuration with energy Eoj• 

i>cpa m rfi~ (x) = rfi~ m rfia (x), 

M (rx~, 1'0) =~fa m ~~ ('Yl) I g- 'fj l-1 tfy m cp8 ('Yl) d~ d'Yj. 

The unperturbed wave function of the system w0 

*The non-uniformity in Eq. (2.1) also appears in trivial 
form because of the dependence of p on the coordinates in 
the remaining terms of (2.1). 

for the fundamental configuration is a determinant 
constructed from the functions 1/Joj while for the 
perturbed configurations the index 0 is replaced 
by n, n', etc. The third term is introduced in 
(2.2) in order that the first-order correction to 
the energy o1E = (w0H''lfo) vanish, since in HFA 
the energy is equal to the mean value of the exact 
Hamiltonian. 

For computation of the corrections of higher 
order, it is necessary to know the matrix elements 
of H' and the corresponding perturbation energy. 
A not very difficult calculation yields 

1 1 '\1 1 ...,,, , , 

('YnH 'Yn•) = 4 .L..J .L..J [M (n;nj, nkn1) 
ij kl (2.3) 

- M (n;n1, n~n~)] t:. (n;n~, n1n~) S (n;n~, n1n;). 

where ~ is a matrix which is diagonal for all 
states except ninjnknz; 

s = sn! sni sn! sni 
nk nz nz nk' 

sn! = 1 - 0 • ~ On ·O ~ On' Oo. 
n nink l a. k ~-" 

k "' ~ 

(2.4) 

Each term of the sum (2.3) corresponds to the 
transition of a pair of particles from the states 
ninj to nknz. The factor S (2.4) forbids such 
transitions when the initial and final states of the 
particle are identical while they both belong to the 
fundamental configuration. In the other cases, 
S = 1 and (2.3) is identical with the matrix element 
of only a single Coulomb interaction. To find the 
chief term of the correlation energy we must sum 
only "platform" diagrams (see below) . for which 
S = 1. Therefore, in actuality, in the present work 
the expansion is simply carried out over the Cou­
lomb interaction. 

So far as the perturbation energy is concerned, 
it is equal to 

En•-En = ~(E ,-En.)· .L..J n t 
l i 

This is connected with the fact that all the per­
turbed states correspond to one and the same 
Hamiltonian (self-consistency is obtained only 
within the framework of the fundamental configu­
ration). 

Corrections to the energy are computed accord­
ing to the general formulas of perturbation theory. 
In particular, for the second-order correction we 
have (2.5) 

Here the double prime on the sum denotes summa­
tion only over those states n, n', no one of which 
is a part of the fundamental configuration. This 
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condition follows from the properties of the matrix 
s. 

Out of all of the diagrams of higher order in 
reference 2 there were considered only the dia­
grams of the "platform" type in which in the inter­
action each particle either becomes excited, i.e., 
transfers from a region inside the Fermi sphere 
to a region outside of it, or conversely, gives up 
its excitation i.e., executes the opposite transition. 
An example of such a diagram of third order is 
pictured in Fig. 1, where the solid lines indicate 
the normal, and dotted lines the perturbed states 
of the particle; q is the momentum transferred. 
In diagrams of such type to each act of the inter­
action there corresponds the denominator q2• In 
the diagrams not yet considered there are nodes 
with momentum transfers with the order of p0, 

as a consequence of which the contribution of these 
diagrams is small. For the same reason we can 
omit the exchange parts of the platform diagrams 
(the corresponding arrangement of particles in 
the final state). 

In the non-uniform case we must also consider 
only platform diagrams since the divergences at 
the lower limit become stronger, being linear in­
stead of logarithmic (Sec. 3). Therefore, the de­
cisive role of these diagrams becomes still clearer. 

In the uniform case there is a logarithmic situ­
ation in which one of the two terms of the same type 
dominates over the other because of the large log­
arithmic factor. Therefore, the principal term of 
the energy was slightly sensitive relative to a 
choice of cumulative diagrams. In the non-uniform 
case, because of the linear character of the diverg­
ence, a correct choice of the diagrams is necessary 
even for calculation of the principal term. 

We note further that the contribution of the ex­
change effects to the wave functions and the energy 
of the electrons is unimportant upon fulfillment of 
conditions (I) and (II). Thus, we can use these quan­
tities in the Hartree approximation. 

From what was said above, it follows that the 
only complication connected with consideration of 
non-uniformity in essence consists of the replace­
ment of the wave functions and the energy of the 
free electrons by the corresponding quantities 
computed with account of non-uniformity. 

3. QUALITATIVE CONSIDERATION 

For a clarification of the aforementioned effects 
associated with consideration of non-uniformity, 
let us first consider the simplified expression for 
the correlation energy in which the summation of 
the diagrams of higher order is replaced by cutting 
off the integral over the momentum transfer in the 

FIG. 1 

diagram of second order by a quantity of the order 
of the Debye momentum PD· In other words, a 
screened Coulomb interaction is introduced from 
the very beginning. A rigorous analysis (Sec. 4) 
confirms the possibility of such an approach and 
shows that the non-uniformity has practically no 
effect on the cut-off momentum. 

The expression for the correlation energy of 
the second order has the form ( C (2.5); the ex­
change diagrams are neglected): 

o2E = 1/2 1r ~··I M (O;OI> nn') /2/(so; + so1 - en- sn•). (3.1) 
if nn' 

It is appropriate to show the transition to the op­
erator representation (3.1). With this aim let us 
express the matrix element in (3.1) in explicit 
form. We group the wave functions with the same 
indices and introduce into consideration the density 
matrix6 

p (x, x') =I:~ (x') cp (x) = 6_ (H x- £ 0 ) o (x- x'), 

which arises from summation over i, j in (3.1). 
Here the sum runs over the occupied states, the 
sum over the unoccupied states (summation over 
n, n') is equal to 

o (x- x')- p (x, x') = 6+ (Hx- £ 0) o (x-x'). 

Here 

6± (a)= 1/2 (1 +a!/ a/), 

Hx is the Hamiltonian of the Hartree approxima­
tion which acts on the variables x. 

We can represent the energy denominator in the 
form 

00 

- 1/ 2 ~ exp {-/ t! (en+ ~'>n•- ~'>o;-~'>oi)} dt 
-oo 

and replace each € in this equation by the Hamil­
tonian acting on the corresponding wave function 
in the density matrix. Introducing the notation 

N± (x, y) = exp(+/ t /Hx) 6+ (Hx- E 0)o(x- y), 

we get for (3.1) 

-00 

X N + (x1x3) N + (x2x4) N _ (x3x1) N _ (x4x2). 

It is expedient to transform to the momentum 
representation 
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N ± (x, y) = ~ dp exp (ip (x- y)) {L± (x, p), 

hence 

{L± (x, p) = ~ exp (+It I H) a"' (H- Eo) )p. (3.2) 

Here and below 

(a)p = exp(- ip. x) a exp (ip. x), 

where a is an arbitrary operator. This yields 
co 3 2 

oE =- (4'lt"t1 ~ dt ~ dx II dz;~ II (dpidqidk;Jk~l!L+ 
-oo 1 1 

(3.3) 

X {L+ (x + Z2, P2) {L_ (x + Za, P2 + q2) exp {i [zi {k2 + Q1) 

+z2 (q2- k2)- Z3 (q2 + k1)]}. 

In this case, qi must vary from PD to co. 

Limiting ourselves in this section to the case 
Zpn » 1, we can neglect the contributions of Zi 
to the arguments fl.±. Actually, because of the 
presence of the exponent in (3.3), zi < Pri « l. 
This permits us to carry out a series of integra­
tions and we obtain the formula* 

00 "" 

oE = - (32 TC 7fl ~ dt ~ dx ~ dp1dP2 ~ ~ 
-<X> PD (3.4) 

X p.+ (x, PI) p._ (x, PI + q) P.+ (x, Pz) p._ (x, P2- q). 

For the transition to the uniform case it suffices 
to say that H = fN2, which gives 

p. ± (x, p) = exp (+It I P2/2) a"' (p2/2- Eo), (3.5) 

and we return to the equation for oE given in 
Sec. 1. 

We note that the condition Zpn » 1 permits us 
to make use of the law of conservation of momen­
tum (Fig. 2). Actually, the momentum acquired by 
the particle from the external field consists, as is 
easy to verify, of a quantity of the order of 1/Z 
which is small in comparison with the momentum 
of transfer PD· 

In this section, we limit ourselves to a qualita­
tive estimate of oE based on the results set forth 
in the introduction. 

We designate by .6.p the width of the effective 
region of momentum space close to the Fermi sur­
face which makes a significant contribution to (3.4). 
According to (3.2) and (3.4), this quantity is deter­
mined by the fact that the particle with momentum 

*The apparent locality of the expression (3.4) in the 
coordinates is connected with the uniformity of the system at 
distances of the order of correlation radius 1/p0 • Actually, 
as is seen from (3.3), the region I x- x.,/-1/p0 makes a con­
tribution to the density of the correlation of the energy at the 
point x0 • 

a b 

• p:t9 .. r • : '!ti~'~ 
Pz PlV Pz 

FIG. 2 
I • p --=-:tit: d~ 

Po 
FIG. 3 

Pi and energy E < E0, acquiring the momentum 
± q in the interaction, undergoes a transition to a 
state with momentum Pi ± q and energy E > E0• 

Integration over t in (3.4) gives the energy gap 
.6.E "' .6. ( p2/2) "' p0.6..e. With consideration of 
Jdp "' Pt.6.p, Po "' p1f2 , we obtain 

oE~-~pdx ~·~~D.p. (3.6) 
PD 

In the uniform case, the width .6.p is determined 
by the conditions Pi< p0, I Pi± q I >Po. whence 
.6.p "' q and oE "' - Qp ln Po· 

However, in the non-uniform case, when a scat­
tering of the momentum op"' (p0/l) 1/2 takes place 
in the state with given energy (Sec. 1), the effec­
tive width .6.p can depend materially on op. Upon 
satisfying the condition (III) ( op » PD) the width 
.6.p becomes identical with op. In this case, (3.6) 
yields 

. c ~ oE ~-.) dxpopfpn ~- D.p/l •. (3.7) 

Thus, upon consideration of the non-uniformity, 
the divergence is strengthened, becoming linear 
instead of logarithmic. This is associated with 
the fact that the effective range of integration over 
the momentum in the uniform case tends to zero 
along with q, while in the non-uniform case it 
remains finite. 

The estimates obtained for the quantity .6.p are 
illustrated in Fig. 3, where the distribution func­
tions over the momentum are plotted for energies 
less than E0 (lower curve) and above E0 (upper 
curve ) . Curves a and b correspond to the uni­
form and non-uniform cases, respectively. 

4. CONSIDERATION OF DIAGRAMS OF HIGHER 
ORDER 

In this section we calculate exactly the principal 
term of the correlation energy by means of summa­
tion of the platform diagrams of higher orders. The 
method used is a direct generalization of the non­
uniform case, the method of Gell-Mann and Brueck­
ner,2 and operates under conditions (I) to (III) (Sec. 1). 
We note that in reference 2 a condition was obtained 
which directly contradicts (III); correspondingly, the 
results obtained below and the results of reference 
2 refer to different limiting cases. 
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Let us first consider the case lpn » 1 (at the 
correlation radius the distribution is uniform). 
For the "propagator function" F q ( t) introduced 
in reference 2 we must choose in this case the ex­
pression:* 

F q (t) = (21t) 3 lJ exp [IiI (En - Em)]6_ (En- E 0 ) 6+ (Em- E 0 ) 

n, nz 

X ~ d~~n (x + ~) cjin (x) cjim (x- ~) ifm (x) exp (iq .;), 

where 1/J and E are the wave function and the en­
ergy in the external field. Making use of (3.2) we 
can put this expression in operator form: 

F q (t) = ~ dp[.L .. (x, p) [L_ (x, p + q). (4.1) 

In the uniform case, (4.1) undergoes a transition, 
in accord with (3.5), to the corresponding exp:J;"es­
sion of Gell-Mann and Brueckner:2 

Fq (t) = ~dpexp(-1 t I (q2/2 + p•q)) (4.2) 

with the contlitions p < p 0, I p + q I > p0• The dif­
ference between (4.1) and (4.2) thus consists only 
in the substitution of the Hamiltonian of the free 
particles p2 /2 by the complete Hamiltonian t 

A 1 2 2 H=:dP -p0 (x))+E0• 

In complete correspondence with reference 2, 
the sum of the platform diagrams has the form 

00 00 

oE=-(32TC4fl~dx ~dq ~ dulJ An/n, (4.3) 
_ 00 n=2 

where A = 4p0cpq ( u )/rrq2 and 
00 

'fq (u) = (1/4 1tp0) ~ eitupq (t) dt. (4.4) 
-oo 

The sum in Eq. (4.3) is expressed in finite form 
and is equal to A - ln ( 1 - A). In this case, the 
integral (4.3) no longer diverges at the lower limit 
and is cut off at q ~ ( cpp0 ) 112• 

In the calculation of Cflq ( u) the chief difficulty 
consists in finding the quantity J1 which is a func­
tion of the Hamiltonian, which itself represents the 

*Strictly speaking, this quantity is not a propagator func­
tion in the ordinary sense and corresponds to the diagram of 
Fig. 4. In terms of field theory, there corresponds to it the 

------
FIG. 4 

expression ifJrG['tjJ where ifJ encompasses the occupied 
states, [' is the vertex part with momentum transfer q, G is 
the Green's function of the electron. Furthermore, in reference 
2 and below, a purely expotential dependence of F q (t) on the 
time is assumed. 

tThe validity of the expression (4.1) also follows from 
comparison with the formulas of perturbation theory [see for 
example, (3.4)]. 

sum of two non-commuting operators -the kinetic 
and the potential energy. As was shown in refer­
ence 4, to obtain an expression which is valid close 
to the Fermi surface, we must limit ourselves to a 
consideration of the first commutator of the oper­
ators shown and to all its powers. This gives for 
the arbitrary function f 

00 
(4.5) 

<f (p2- pg))p = 1Y~s ~ ei•'s f (p2- p~ + 2't (I pVp~ I )'/•) d't, 
-oo 

where s = pY'pVI pV'p~ 1. This expression is valid 
everywhere exceot for the extremely narrow ( and 
therefore unimportant) region close to the Fermi 
surface I p -Po I ~ 1/l. 

Applying this equation to (3 .2) and making use 
of (3 .1) and (4.4), we obtain the following expres­
sion for Cflq ( u) (after some simple calculations*): 

'fq (u) = rp () .. ) = 1 + TCA2 - 2 V ;-(cos 1..2 • S (A)- sin )...2 • C (1.)) 
1. 

-4V2TCA2 ~[sinx2 ·S(x) +cosx2 ·C(x)]dx, (4.6) 
0 

A = uj(2p0 I V p~ !)'1", 
where C and S are the Fresnel integrals. The 
quantity cp (A.) is a monotonically decreasing func­
tion of A., and for small A. has the form 1 - ..f2ii A., 
while for large values of A. it has the form 4/A. 4• 

Substitution of (4.6) in (4.3) gives 

oE = - 2 Y2 I \ dx 2 1 V 2 1'1• 
3:n:'l• ~ Po Po ' 

where 
00 

I = ~ !f'l• (1.) dl. = 0.286. 
0 

The correlation energy oE, as a functional of the 
density p, has the form 

oE = - 0.118 ~ (p I V p 1)'1' dx. ( 4. 7) 

A correspondence of this expression to the quali­
tative equation (3.7) is evident. We note that the 
principal contribution to (4.3) is given by the region 
A. ~ 1; therefore, the effective cutoff radius q ~ 
pfrl2 is identical with the Debye radius. 

For a strongly compressed lattice we can, in 
finding p (x), make use of the Thomas-Fermi 
model (see reference 5) 

(3TC2p)'/• = 2 (Eo+ Z/x- ~ p (x') I x- x' l-1 dx'), 

whence 
(4.8) 

p = (3Z/4TCR.3 ) {1 + (16 Z/3TC2)'1•R. (~2/2 +~-1 - 3M+ •.. }, 

*The condition (III) permits us to replace p + q by p in the 
argument of the function fL- (4.1). 
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where ~ = x/R, R is the radius of the neutral cell. 
Substitution of this expression ·in (4. 7) gives ( N is 
the total number of particles)* 

oE =- 0.106 NZ'1•. 

The most important term not considered here is 
the exchange energy of second order which has a 
magnitude of the order of 0.02 N (See reference 2). 
The ratio of (4.9) to the total compressed matter is 
equal to 2.87 N p213 and is a small quantity. 

We proceed to find the contribution of the corre­
lation to the equation of state of the material. The 
corresponding correction to the pressure is deter­
mined by the equation 

oP =- o (o£) 1 av = ('.12 1 N) a (o£) 1 ap. 

In view of the fact that the principal term oE does 
not depend on the p, it is necessary to make use 
of the following terms of an expansion of the type 
of the second term of (4.8). This gives 

(4.10) 

The ratio of oP to the principal term in the pres­
sure is equal to 1.92p5/ 3, which is always very 
small. 

We note that the model frequently used in calcu­
lations of the equation of state, in which the neutral 
cell is considered independent of the rest of the 
material, gives an incorrect value of the correla­
tion contribution to the pressure. The fact is that 
at high compression, when the dimensions of the 
lattice R becomes smaller than 1/pn (while the 
latter quantity, being of the order of .fR , falls off 
more slowly than R), distant correlations are not 
taken into account in this model. 

We proceed to the case lpn ~ 1. In this case, 
we can introduce only symbolic expressions for 
oE, obtained by replacing the sum in (4.3) by the 
quantitiest 

"' _h <(4Po cp ('-)I ~~t )q In. (4.11) 
n-2 

Here the operator D. - 1 acts on all subsequent 
factors, while in the uniform case and in the case 
considered above, only the result of the effect of 
A -1 ( • ...,. on exp 1q • x) was important. 

The case under consideration corresponds to 
uncompressed material with large Z. The expres­
sions (4. 7) to (4.10) obtained above are applicable 

*The uniform model reduces to the expression2 BE = 

-0.0104Nln p + ... ,which has nothing in common with (4.9). 

t For the derivation of ( 4.11) it is necessary to make use 
of the relation p.(x + z, p) = exp (z\l)p.(x, p) [compare (3.3) 
and the condition (III)]. 

here only qualitatively. So far as electron corre­
lation in metals is concerned, we must emphasize 
the impossibility of separate consideration of con­
duction electrons and ionic electrons, since the 
correlation radius in a real metal is of the order 
of the distance between nuclei. Therefore, strong 
correlation coupling will take place between the 
conduction electrons and the ionic electrons. In 
view of the fact that the number of the latter is 
large in comparison with the number of conduction 
electrons, we must consider that these correlations 
play a more important role that the correlations 
between the conduction electrons. Therefore, al­
though the conduction electrons also form a more 
uniform distribution than the ionic electrons, the 
uniform model is inapplicable in this case also. 

For an isolated atom we can obtain the depend­
ence of oE on Z; and Eqs. (4.9) {lpD » 1) and 
(4.14) (lpn « 1; see below) lead to the same re­
sult 

oE~z' 1•,. (4.12) 

naturally with a small coefficient. Thus, for large 
Z, the contribution of the correlation to the energy 
of the atom is small (principal energy term ~ z7/3). 
It is also actually small for z. 

In the case lpn « 1, Eq. (4.11) can be materi­
ally simplified, since the first term in it will play 
the fundamental role. Introducing the expression 
1/J(u,x) = 4p0 (x)cp(A.(x))/7r, we have 

"' 
8£ =- 12~1ts ~ du ~ 1 :~~ 12 rp (u, x) ~ (u, y). (4.13) 

-co 

Pair correlations in this case play a dominant 
role and the infrared catastrophe is lacking. The 
fact is that the momentum acquired by the particles 
from the external field is so large in this case that 
it takes the particles out of the small-momentum 
region that is responsible for the collective motion. 

In particular, if the system has such small di­
mensions L that Lpn « 1 (or LN1f3 « 1 ) then 
the previous formula reduces to the estimate 

oE~N'1•. (4.14) 

We note that the independence of oE of the density 
and the small role of the corrections of higher order 
follow directly from perturbation theory (Sec. 2). 
Actually, the matrix element has the order of L -1 

in this case, while the energy gap is of the order 
L - 2, whereupon the correction of nth order amounts 
to onE ~ Ln-2• These questions were considered in 
reference 8 in application to two-electron atoms. 

In conclusion, we again emphasize the impossi­
bility of using the uniform model to find correla­
tion effects in the range of low temperatures. If 
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the material is in the crystalline state, then, as 
shown above, accounting for the non-uniformity in 
the particle distribution, due to the presence of the 
lattice, is absolutely necessary. If the same mate­
rial can exist as a plasma, the effects of internu­
clear and electron-nuclear correlations come to 
the forefront. The fact is that the nucleus, having 
a small kinetic energy, is more sensitive to the 
field acting on it than is the electron. Therefore, 
the screening parameters are determined primar­
ily by the nuclear mass and charge. In this case 
~he dominant role of the nuclei appears in all tem­
perature ranges where the electron gas is degen­
erate. 

Formulation of the problem on the correlations 
in an inhomogeneous gas is contained only in the 
recent work of Hubbard, 9 where the known peculi­
arities of behavior of electrons in a periodic lat­
tice field are taken into account. In the specific 
cases considered in the present research, it was 
possible to avoid the complication connected with 
this in the application of the approximation close 
to the quasi-classical. 
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