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Transition regions in the 180° and goo boundaries of ferroelectric domains in barium titanate 
are considered. The equilibrium variation of the spontaneous-polarization vector is deduced 
from the condition of minimum thermodynamic potential. Explicit expressions are obtained 
for the thickness and surface energy of the domain boundaries, and numerical estimates are 
made. The 180° domain boundary in Rochelle salt crystals is discussed. 

NuMEROUS experiments performed by different 
investigators1•2 have shown that in the domain 
structures of single crystals of barium titanate 
the directions of spontaneous polarization in neigh
boring domains form angles of 180° or goo, which 
we shall call 180° and goo domains. Little1 con
eluded from optical observations that the thickness 
of the transition region between 180° domains is of 
the order of the lattice constan.t ( d = 4 x 10 -s em), 
whereas for goo domains it is 5 x 10-5 em. She 
also noted the dominant generation and growth of 
goo domains and the relatively greater ease with 
which goo boundaries are moved by external me
chanical stresses. This latter effect is evidently 
the result of lower surface energy of goo boundaries 
compared with 180° boundaries. 

It may be of interest to obtain quantitative re
sults for the thicknesses of transition layers and 
surface energies of 180° and goo domain walls. 
We shall use the method suggested by Landau and 
Lifshitz3 for investigation of the domain structure 
of ferro magnets. The variation of polarization in 
an intermediate region is determined under ther
modynamic equilibrium in the absence of an exter
nal field, and explicit expressions are obtained for 
the thickness of the transition layer and for the sur
face energy density which plays a part as the "co
efficient of surface tension" of domain walls. 

We shall obtain the contributions to the thermo
dynamic potential which are associated with the 
anisotropy energy, elastic energy, and electro
striction for cubically symmetrical barium titanate 
near the Curie point. In a transition region, an 
essentail part is also played by the energy associ
ated with nonuniform distribution of the polariza
tion vector P: 
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This expression can reasonably be used so long 
as the thickness of the transition layer is consid
erably greater than the lattice constant. The ther
modynamic potential in the transition layer is thus 
given by 

ci> == Cl>o + ~ [('V'Px)2 + ('V'Py) 2 + ('V'Pz) 2] 

B (p2p2 p2p2 p2p2) Cn ( 2 2 2 ) + 1 2 x y + x z + y z + 2- Uxx + Uyy + Uzz 

(1) 
+ Uzz(P';; + P!)J + 2q44 (UxyPxPy + UxzPxPz + UyzPyPz), 

where uik is the deformation tensor. The param
eter K can be evaluated by assuming that the en
ergy ( K/2) ( V'P )2 is of the order of the exchange 
energy aP2 far from the transition point if P 
varies essentially only at distances of the order of 
the lattice constant d. Then the lower limit of K 

isgivenby K"' la(O)Id2, where a(T)=3.8x 
10-5 ( T- ®). A reasonable range of values is 
K "'3 x 10-15 to 3 x 10-16 cm2• 

In the theory of domain structure the essential 
difference between ferroelectrics and ferromag
nets is provided by two factors. The exchange 
interaction in ferromagnets results in a constant 
absolute value of the magnetization so that the only 
change which occurs is a continuous rotation of the 
direction of magnetization in the intermediate re
gion. In the case of ferroelectrics we must take 
into account the fact that the absolute value of the 
spontaneous polarization in the intermediate re
gion can change from the very beginning. 

It must be remembered, however, that in any 
real ferroelectric crystal the conductivity is dif-
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ferent from zero. Therefore free charges can 
generally accumulate on crystal boundaries or 
domain walls. For this reason a flat ferroelectric 
in a condenser cannot be divided into domains. 4 

For the 180° and 90° domains of interest here, 
assuming equal magnitude of the polarization 
throughout both domains, we can have the condi
tion div P = 0. Therefore the absence of free 
charges on domain walls, that is, div D = 0, is 
consistent with zero value of the electric field E, 
as is required for equilibrium when conduction 
occurs. We shall consider this case. 

Let us consider the 180° domain wall of a 
BaTi03 single crystal when, for example, the 
polarization of neighboring domains is parallel 
and antiparallel to the z axis and the separating 
wall is in the ( 100) crystallographic plane. Then 
div P = 0 leads to Px = 0. Furthermore, since 
the interior of each domain can be regarded as 
unstressed all components of the stress tensor 
aik = - Cl<I>/Cluik will be zero far from the transi
tion layer, that is, for x = ± oo. 

The deformation tensor in the interior of the 
domains is then given by 

Uxx = Uyy = fLP~, Uzz = pP~, Uxy = Uxz = Uyz = 0, 

where the measurements of Caspari and Merz5 

give the following values of the constants: J.l. = 
-10.5 x 106 cm4fcoulomb2 and p = 24.0 x 106 

em 4/ coulomb2• Since the polarization distribution 
in the transition layer depends only on x the de
formation tensor also can depend only on x; there
fore uyy. Uzz, and Uyz remain constant and 
equal to their boundary values. The other defor
mation components are determined from the equi
librium equations of an elastic body, Claik/Clxk = 0, 
which in our case become 

Gxx = 0, Gxy = 0, Gxz = 0. 

We thus obtain 

Uxx = p.P~- (q12/ Cn) (PZ + p;- P~), Uxy = Uxz = 0, 

and all components of the deformation tensor in 
the transition layer satisfy St. Venant's continuity 
conditions. 

Inserting the deformations into (1), we obtain 
the variable part of the thermodynamic potential 
in the form 

Cl> = Cl>o + -i- [(\7Py)2 + (\7Pz)2 ] 

, a p 2 b p 2 c p4 P4) d p2p2 
T 2 y + 2 z + T( y + z + 2 y Z• 

aj2 = oc + [qup. + q12P- (q12c12/cu)(p +!-'-)I P~, 
b I 2 = oc + [qup + q121-'-- (q12C12/ cu) {p + !-'-)] P~, 

C I 2 = ~1 - qid Cu, d I 2 = ~2 - qi2/ Cu. 

On the basis of Devonshire's results6 we can as
sume the following values of the constants: 

a~ 1.5 X 10-2, b ~- 5.6 X 10-2, 

c ~ 1.5 x 108 cm4/coulomb2, 

d ~- 5 x 107 cm4/coulomb2• 

Near the Curie point, where and only where an 
expansion of the thermodynamic potential is valid, 
the temperature-dependent coefficient a = 3.8 x 
10-5 ( T- e) gives a small contribution to the co
efficients a and b, which are entirely determined 
by electrostriction and have opposite signs, with b 
essentially negative. All of this is true only for the 
transition layer, since within a domain Py = 0, 
I Pz I =Po and in the expression 

+ p; = oc.P~ + [ qup + q12fL- q12 ~:: (p + !L)] P~ 
the coefficient of P~ vanishes at the Curie point, 
which is in accordance with the phenomenological 
theory. 

The condition of thermodynamic equilibrium, 
which is the minimization of J <I> ( Py, Pz) dV, re
duces to the equations 

xP~ = aPu + cP!+dPuP!, xP; = bP2 + cP: + dPzPz, 

which must be supplemented by the following boun
dary conditions at x = - oo: 

P~=P~=O, Pu=O, P2 =-P0 • 

Besides the "trivial" solution Py = 0, Pz =- P 0, 

which represents uniform polarization in the absence 
of domain walls, there exists an exact solution rep
resenting the presence of a transition layer and sat
isfying the boundary conditions 

Py = 0, Pz = P0 tanh(xlo), 

where P~ =I b I /c determines the equilibrium po
larization within the domains and o = P01../ 2K/c 
determines the effective size of a transition region 
for 180° domains. When d is sufficiently small to 
be neglected by comparison with c, the equations 
are separable and the solution is unique. In the 
general case the proof of uniqueness requires fur
ther examination. 

We note that the foregoing solution differs es
sentially from the solution for a 180° transition 
region in the case of ferromagnetism: 3 

My = M0 sin 6, M2 = M0 cos 6, sinh(xjo) = Dcot 6. 

This is associated with the fact that the spin ex
change energy gives an "infinitely" larger contri
bution ( 105 times larger) to the thermodynamic 
potential than the elastic energy and higher terms 
of the expansion. This insures a constant absolute 
value of the magnetic moment in the transition re-
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gion. Therefore in the ferromagnetic case the 
original set of equations is highly degenerate, with 
a = b, c = 0, so that its first integral gives the re
quired solution. 

The solution for BaTi03 gives o R: 2 x 10-7 -

5 x 10-8 em for the thickness of 180° domain walls, 
which is several times the lattice constant, and thus 
agrees with experimental results. 1 

We can also obtain an expression for the excess 
surface energy associated with the existence of a 
180° domain wall: 

00 

a=~ (<11- <llo) dx = 4/a P~ V2xc ~ 10 erg/ cm2 • 

-00 

This agrees with the value given by Merz. 7 

We shall now consider a 90° domain wall of bar
ium titanate in the ( 101) plane with the polariza
tion in neighboring domains directed along the z 
and x axes, respectively. For ease of calculation 
we shall turn the coordinate system around the y 
axis through rr/ 4 so that the domain wall will lie 
in the plane x = 0. The notation will now refer to 
the new coordinate system. The condition div P = 0 
now reduces to conservation of the component nor
mal to the wall, Px = P 0 /.f2; thus all variations, 
as in the case of the 180° layer, will be associated 
with the <dependence of Py and Pz on x. The 
previous method is used to determine the compo
nents of the deformation tensor in the 90° layer. 
These components satisfy St. Venant's continuity 
condition and are given by 

Uxx = [(c44 (!L + p)- C12!L- q44) P~- 2q12P! 

- (qn + q12- 2q44) P;] (~n + C12 + 2c44)-1, 

_ p2 _ [1. + p p2 v-2 Q44 p p 
Uyy - !L O• Uzz- -2- O• Uxy = - -- o Y• cu 

q,. -qn Po p 
Uxz = ·c .r- z, Uyz = 0. u- c12 , 2 

The variable part of the thermodynamic potential 
can be written as 

<P =<Po+ T [('V Py}2 + ('V P2 ) 2] 

+ ~p2 + .!!2_p2 + _G_l_p4 + ~p4 + ~p2p2 2 y 2 z 4 y 4 z 2 y z, 

with the condition for the minimum given by the 
equations 

xP~ = a1Pu + c1PZ + d 1PuP;, 

xP~ = b1Pz + c2P~ + d2PzP!. 

The only solution which satisfies the boundary con
ditions Py = Py = 0, P~ = 0, Pz = P 0 /.f2 at 
x = - oo is given by 

Py=O, Pz =- _.!l. tanh~ V2 ll,' 

where 

A numerical estimate gives 

C2 = ~1 + ~2- (qn- ql2- 2q44)2 /(en +c12 + 2cH) 

= 107 cm4f coulomb2, 

from which we obtain o1 ,...,. 10-6 to 5 x 10-7 em, 
which is one order of magnitude larger than for 
the 180° case. The disagreement with the experi
mental value 61 "' 10-5 em may result from the 
fact that the 90° domains observed in reference 1 
were comparable in size with the thickness of the 
transition layer, in which case the crystal cannot 
be regarded as unstressed inside a domain. 

For the surface energy of a 90° transition layer 
of barium titanate we obtain the expression 

al = 2fa V~c;P~. 

For this case an estimate gives o-1 R: 2 to 4 erg/ 
cm2. Comparison with 180° domains shows that 
in the 90° transition layer a change of the polariza
tion vector is favored energetically since the mini
mum absolute value is Px = P 0/.f2 rather than 
zero. This evidently accounts for the ease with 
which 90° domain boundaries are produced and 
moved. 

We shall now consider a 180° domain wall in 
the actually observable case of a Rochelle salt 
single crystal where the polarization in neighbor
ing domains is directed parallel and antiparallel 
to the y axis and all changes occur along the z 
axis. As previously, the condition div P = 0 re
duces to the relation Px = 0. The thermodynamic 
potential will receive contributions from the energy 
of nonuniform polarization, anisotropy, elastic en
ergy (taking account of the orthorhombic symme
try), linear piezoelectric effect, and quadratic 
electrostrictive effect: 

<P = <1>0 + x~ ('V Py)2 + -} ('V Pz)2 + t:1..2P; + t:J..aP; 

+ ~2 p4 + ~3 p4 1 ( 2 2 2 -2 y z z + z- CnUxx + C22Uyy + CaaUzz 

+ C44U!z + C55u!z + CasU!y) + C12Uxx Uyy + C1aUxxUzz 

+ C2aUyy Uzz -hl4Uyz P x - h26 Uxz P y- ha6 Uxy P z 

+ {q12P! + qlaP;) Uxx + {q22P! + q23P;) Uyy 

+ {q2aP! + qaaP;) Uzz + 2q44PyPzUyz• 

In the absence of an external electric field the 
stress tensor O'ik is given by O'ik = - ocl>/auik· 
If the crystal can be regarded as unstressed in
side the domains the deformations are determined 
from the equations D'ik = 0, Px = Py = 0, Pz = ± P 0 

with x = ± oo and are found to be 
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Uxx = pP~, Uxz = 0, Uyy = flP~, Uyz = 0, 

Uzz = f..P~. Uxy = + h3sPo I c66• 

where the constants p, p,, A. are solutions of the 
equations 

CttP + C;2!l + C;3A = - q,3 (i = 1, 2, 3). 

In the transition layer, as previously, uyy• Uzz 
and Uyz retain their boundary values, and the 
other components of uik are obtained from the 
equilibrium equations u1i = 0: 

These deformations give the following form to the 
variable part of the thermodynamic potential: 

<P =<Po+ x{-(V Pu)2+ ~· (VPz)2 

A p• B p2 C p4 D p4 F p2 p• +-f u+-z z+-r Y+4 z+;r-· y Zl 

A h~5 [' (. C12 Cta , ). ] p• -2 = 0(2- 2- + "q23 + !l--!l- - 1\ ql2 0• 
c~ cu ~t 

B his [ (Ct2 Cts ),. ) J p2 2 = CX3- 2c66 + f..q33 + flq23 - cu !l + ~ qla O• 

; = ~.- qi.Jcu, ~ = ~3- qis/Cu, F = -q12q1a/cu. 

The minimum of J <P dV reduces to the equations 

x2P~ = APy + CP! + FPuP;, x3P~ = BP2 + DP~ + FP!Pz, 

with one solution that satisfies the boundary condi
tions P)r=Py=O, P~=O, Pz=-P0 when x= 
-00: 

Py=O; Pz=P0 tanh-f-; o= P: y2~!!.. 
For the density of the surface energy associated 
with a domain wall in Rochelle salt we obtain 

a = 4/s V ><aDPg. 

It is known8 that at T = ooc 
(2) 

P0 = 2.5·10-7 coulomb/cm2, cx3 = -2·10-2 , 

~3 = 3.3·1011 cm4/coulomb2, q13~90, 

and at T = 20oc 

P 0 = 1.4·10-7 coulomb/cm2, cx3=- 8·10-2 , 

~3 = 4-1011 cm4/coulomb2, q13~150. 

In addition, using the values K"' d2 "' 10-14 cm2, 

c 11 = 4 x 10-8 coulomb2/cm4, we obtain 

at T = ooc: o= 1.2·10-7 em, a ~6·10-2 erg/cm2; 

at T=20°C: 3=2.2·10-6 em, a~1.2·10-2 erg/cm2 • 

These values agree with the results of reference 
8, where, however, electrostriction is not taken into 
account consistently and the deformations do not 
satisfy the St. Venant's compatibility conditions. 

The given values of the surface energy of domain 
boundaries in ferroelectrics enable us to investi
gate different domain configurations corresponding 
to the minimum thermodynamic potential. 

In conclusion the author wishes to thank Prof. 
V. L. Ginzburg and I. E. Dzialoshinskii for valuable 
suggestions and fruitful discussions. 
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