
SOVIET PHYSICS JETP VOLUME 35 (8), NUMBER 5 MAY, 1959 

ENERGY LOSSES OF AN ELECTRON IN A MEDIUM WITH SPATIAL DISPERSION 

V. M. AGRANOVICH and A. A. RUKHADZE 

Submitted to JETP editor, June 10, 1958 

J. Exptl. Theoret. Phys. (U.S.S.R.) 35, 1171-1174 (November, 1958) 

A general formula is obtained for the energy losses of an electron moving in an arbitrary 
anisotropic medium characterized by spatial dispersion. It is shown that in the nonrela­
tivistic case the total energy losses in an isotropic medium do not change when spatial 
dispersion of the medium is taken into account; however, the losses due to excitation of 
longitudinal waves do change in the general case. It is also shown that when spatial dis­
persion is taken into consideration the Cerenkov radiation at a frequency w is distrib­
uted over several cones. The intensity of this radiation is calculated. 

l. Ginzburg1 has recently analyzed the propagation 
of electromagnetic waves in media with spatial dis­
persion. It is especially important to take account 
of this dispersion at frequencies close to resonances 
in the medium. The optical properties of a medium 
in the neighborhood of resonances has been consid­
ered in greater detail by Pekar2 and the present au­
thors.3 It is also of interest to study effects that 
arise if one considers the i.nfluence of spatial dis­
persion on the energy losses of an electron which 
moves in a medium. 

Suppose that an electron with velocity v moves 
in an anisotropic medium characterized by an arbi­
trary spatial dispersion. Maxwell's equations for 
this case are written as follows: 

divH = 0, curl E = -+ aa~, 
d. • 1 ao 4, 

1v D = 4>teo (r- vt), curl H =caT+ c evo (r- vt), 

D = ~ ~ (w, q) Eq ei(q·r-wt) dq. 
(1) 

Taking Fourier components of E, D, and H we 
have 

( ) _ }j'___ (' • f 2 ' _ (q·v)' ~ • - -1 iq•(r-vt) 
E r, t -- 2"'"c" j (q v) tq Yj c2 ~ (q v, q)} ve dq, 

(2) 

where fj is a projection tensor in which 7Jik = 
<'>ik- qNk/q2• 

The energy losses of an electron moving through 
a medium are determined by the work of the retard­
ing force that acts on the electron; these forces 
arise by virtue of the field set up by the electron 
itself. Substituting the field at the electron, i.e., 
at the point r = vt, and using the identity 

f A (q•v)2 A - 1 '- (q, b-1)2 b-1q 
,q2 ..,1---2- s(q·v, q)} v= b 1 v + , , 
\ c 1-(q,b-lq) 
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where 

we find the following expression for the loss per 
unit path length: 

F __ ~ ~ ( ) l(v,b-1 q)l2-(v, f}-1 v) (q, f}-1 q) + (v, 6-1 v) d 
- 2 2 2 q.v A q. 

7t oc 1- (q, b-1 q) (3) 

This is the energy loss of an electron which moves. 
in an anisotropic medium with arbitrary spatial 
dispersion and is a generalization of the corre­
sponding formulas given, for example, in the re­
view paper by Bolotovskii. 4 

2. In the nonrelativistic approximation Eq. (3) 
is simplified and assumes the following form: 

(4) 

As an example we may consider the case of an iso­
tropic non-gyrotropic medium with arbitrary spatial 
dispersion. The dielectric-constant tensor is then 

s;k (q·V, q) = s0 (q·V, q) o;k + sl(q·V, q) qi qk / q2 • (5) 

We take the z axis in the direction of v and in­
troduce the notation k = ..f qi + q~ , w = q~v. 
Equation (4) becomes* 

(6) 

where 

s=(q, ~q)/ q2 =So+ Sr. (7) 

Assuming that the complex dielectric constant 

*The upper limit k, in the integration over k is deter­
mined by the condition of applicability of the macroscopic 
analysis (cf. reference 5, §84). 
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€ ( w, k2 + w2/v2 ) has no poles in the upper half­
plane, we have from Eq. (6) 

e• i k~v _ 
F = ""fi2 .) cudw[l-1 je(w, 0)]. 

0 

Since E1 ( w, 0) = 0 (cf. reference 1) and 

(8) 

€( w, 0) =Eo ( w, 0) is the dielectric susceptibility 
when spatial dispersion is not taken into account, 
we may conclude that in the nonrelativistic approx­
imation spatial dispersion does not effect the total 
energy loss of an electron which moves in an iso­
tropic medium. Equation (8) has been investigated 
in detail in reference 5. It should be noted, how­
ever, that while the total energy loss is not changed 
when spatial dispersion is considered, there can 
be a change in the energy lost by excitation of lon­
gitudinal waves. As follows from Eq. (6), the los­
ses due to excitation of the longitudinal waves are 
determined by the zeroes of the quantity 
€ ( w, k2 + w2!v2 ) which, when spatial dispersion 
is introduced, lead to poles at frequencies wn = 
± wn ( k2 ). Hence, the loss due to excitation of lon­
gitudinal waves (with spatial dispersion) is given 
by the following expression, which also applies in 
the relativistic case: 

k2 
0 

Flong = e; ~ ~ Wn (x) dx / [V2X + w~ (x)] d!n s 
n o 

X [ Wn (x),x + w~2(x)J. (9) 

According to reference 3, the dielectric-constant 
tensor associated with one of the resonant absorp­
tion frequencies of the medium (assuming spatial 
dispersion in an isotropic, non-gyrotropic medium) 
is: 

where the quantities a and a 1 characterize the 
spatial dispersion of the medium. In this case the 
zeroes of the quantity € ( w, k2 + w2 /v2 ) determine 
two poles at frequencies: 

2 _ [(a+ a1) k2 + ~ ]'I• 
w1'2(k)- + 1-(a+al)v-• ' (11) 

Using Eqs. (7) and (10), we obtain from Eq. (9) the 
loss due to excitation of longitudinal waves, on the 
basis of the model considered in reference 3 

_ w~ 2 k0v a1e2k~ 
Flong - ""fi2 e In Vi3 - 2 (v"- a- at) . (12) 

This expression differs by the presence of the sec­
ond term from the energy loss in a medium in which· 
spatial dispersion is neglected. 

Since a and a 1 are approximately ( d/A.0 )2 v~l 
where vel is the velocity of an electron in an atom 
(Vel ,..., 108 em/sec), d,..., ~o-8 em is the lattice 
constant, k0 ,..., 1/d, when v >Vel the ratio of the 
second term to the first term in Eq. (12) is a small 
quantity ( d/A.0 )2 ,..., 10-6• This estimate indicates 
that if we take account of the spatial dispersion, 
there is practically no change in the amount of 
energy lost by a moving electron in the excitation 
of longitudinal waves. This result is to be expected 
because spatial dispersion is important only near 
resonant frequencies of the medium [Eo ( w, 0)- oo] 
while the frequency region associated with longitud­
inal waves is very far from these resonance fre­
quencies. 

3. For an isotropic non-gyrotropic medium, we 
have from Eq. (5)* 

(13) 

Hence, in the relativistic case, using Eq. (3) we 
find the following expression for the total energy 
loss: 

+oo k, 

F = - i~ ~ cudw ~ kdk 
-<Xl 0 (14) 

If spatial dispersion is neglected, the quantity E1 

vanishes and € becomes Eo ( w, 0 ), so that Eq. 
(14) becomes the well-known expression for loss 
in an isotropic medium in which spatial dispersion 
is neglected (cf. references 4 and 5). 

Since Cerenkov radiation losses are determined 
by the zeroes of the expression in the curly brack­
ets in the denominator of Eq. (14), we may conclude 
that these losses are centered in frequency regions 
in which v > c/ni ( w ), where the ni ( w) are de­
fined by the equation 

(15) 

If spatial dispersion is neglected, Eq. (15) has a 
single root n2 = Eo ( w, 0 ). When spatial dispersion 
is taken into account, in general, Eq. (15) has sev­
eral roots ni = ni ( w ) • If () is the angle between 
the direction of motion of the electron and the radi­
ation direction, since cos ei = c/vni ( w ), we find 
that the Cerenkov radiation at frequency w is dis­
tributed over several cones with aperture angles 
ei. It is easy to show that the intensity of the Ce­
renkov radiation in the frequency interval w, w + dw 
is given by the following expression: 

*To verify the identity in (13) we recall that ? = ~· 
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, e" ", 1- c2jv2n~ (w) d df = --- J ____ __:_~ __ (•) (!), 

c' ~ 1 1- (d dn~) € 0 (<>>, n;w2/c 2) I 
l 

(16) 

Since spatial dispersion is important close to 
the absorption poles of the medium, the new Ce­
renkov radiation cones will, in general, correspond 
to a frequency region close to a resonance frequency 
of the medium. Thus the transmission of Cerenkov 
radiation is difficult because of absorption; to ob­
serve this effect experimentally, it would be neces­
sary to use very thin film. The situation is sim­
plified in optically-active media in which, accord­
ing to reference 1, the frequency regions in which 
the new solutions appear are rather broad, so that 
absorption effects are not important. 

In conclusion the authors wish to thank V. L. 
Ginzburg for his continued interest in this work and 
valuable discussions. 
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