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Formulas for the differential cross sections of the stripping reactions ( d, p) and ( d, n) 
have been obtained in the Born approximation, with inclusion of effects of the antisymmetry 
of the total wave function. The most important case, that of the shell configurations jn-t 
for the initial nucleus and jn for the final nucleus, has been considered. 

1. GENERAL THEORY 

IT has been shown in a number of papers that in 
particular cases of calculations of stripping re­
action cross-sections the antisymmetrization of 
the total wave function can affect the results of the 
calculations to an important extent. 1 Calculations 
on stripping reactions with inclusion of the anti­
symmetrization have not been carried out, however, 
unless one counts the work of French, which is of 
a preliminary nature. 

We shall use the results of the general theory 
of scattering.2•3 We first carry through a treatment 
without antisymmetrization. We assign the numbers 
0 and 1 to the proton and neutron in the deuteron; 
V(Ol) is the interaction between them. The inter­
action of the proton with the other nucleons of the 
nucleus is described by an averaged potential 
V(O~ ), taken, for example, from the optical model. 
Then the wave function is determined from the 
equation 

'¥<+> = <P + (1/a(±l) V (01) <P, a<±>= E +is-H, (1) 

where H is the total Hamiltonian of the system, 
and <I> is the wave function of the initial state 
[reaction (p, d)]. 

The antisymmetrization is performed by the 
application of an operator A (whose concrete 
form will be given below): 

'¥<+> = A'Y<+> = A <I>+ (1/a<±>) AV<P. (2) 

To obtain the expression for the reaction am­
plitude in the Born approximation, we replace 1/a 
by 1/a' ( 01), using the fact that3 

1/a={l/a'(01)}[1 + {H'(Ol)/a}], 

where a' ( 01) is the Green's function of the final 
system,2 and Hfin = H - H'( 01) is its Hamilto­
nian. 
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The reaction amplitude is given by the second 
term in Eq. (2), that is, 

AV<P I a' (01). (3) 

Thus our task reduces to the calculation, in Born 
approximation with distorted waves for the protons 
and deuterons, of the matrix element 

\ . . 
.) 'I"rin(2, 3, ... ,n)'Ykd(O,l)AV'Yint(l, 2 ... n) 

X 'Ykp (0) dr0 ••• drn, 
(4) 

where 'llfin is the wave function of the final nucleus, 
'llinit is that of the initial nucleus, 'l!Kp is the wave 

function of the proton in the field of the initial nu­
cleus, and >¥ Kct is that of the deuteron. The anti-

symmetrization operator A is defined in the 
following way: 

AV'¥int(1, 2 ... n)'I"k (0) =,r 1 
1 ~ (-l)n+l-iV(i, j) 

P rn+ i+i 
(5) 

The normalization factor in this case is found 
from the requirement of conservation of flux. The 
antisymmetrization procedure used in Eq. (5) was 
indicated by Racah in reference 4, where the anti­
symmetrization was carried out for the wave func­
tion of the shell configuration [lll' . 

2. CALCULATION WITH WAVE FUNCTIONS OF 
THE SHELL THEORY 

We shall suppose that 

'I" int = It <XI)' 'I" fin = un-l1X2), 

where a is the set of quantum numbers necessary 
for unique specification of a state. Using Racah's 
technique,4•5 with the expression (5) for the oper­
ator A, we work out the matrix element (4): 



816 V. G. NEUDACHIN 

I= 2/1 + (n-1)2/2 + 2 (n-1) (n-2)/3 ; 

/1 ~ (kdSd (12) I v (12) I j (1) kpSp (2)); 

/2 ~ ~ (kdSd (12), j (3) I v (13) I rrx4 (12) kpSp (3)) 
a,a., 

X (j"rxlf r-2 r:ta; rrx4) <r-Irx21 r-2 r:ta); 
(6) 

I a~ lJ <rrxs (12)! V (12) I j (1) kpsp (2)) (kdSd (34) I ?rx6 (34)) 

Here <jn I jn-1 > and so on are fractional paren­
tage coefficients·. Thus the calculation of the differ­
ential cross-section reduces to the calculation of 
IL I~, I1I2, etc. 

In carrying out the sums of products of Clebsch­
Gordan coefficients over magnetic quantum numbers 
we have used the effective graphic method of Levin­
son.6 We thus arrive at the following formulas (the 
expressions for the interference terms are not pre­
sented here ) : 

(7) 

'I "" 
x'li2(8n:ct)'\h<I)( )"(lk-kj)2d M .\ 1 xr It P d r r r. 

R 

Here a is the reciprocal of the deuteron radius; 
cpz ( R) is the amplitude of the wave function of a 
bound nucleon at the surface of the nucleus; 

h~1) ( x) is the spherical Hankel function of the first 

kind; j z ( x) is the spherical Bessel function; K is 
the imaginary wave number of a bound nucleon; R 
is the radius of the "edge" of the nucleus; [ J 1 ] = 

2J1 + 1, etc.; and C~12M2m3 are Clebsoh-Gordan 

coefficients. 

(8) 

x{J~ J~ J1 } {~3 ! J2 } {~ j 8 }Pa (cos 6). 
J4 Ja b ] Ja b ] l b 

Here 8d is the spin of the deuteron, s that of the 
nucleon; p22 = J 1 + J 2 + l + s + Z2 + L +a; the sum­
mation is taken over all indices except l, s, j, 

8d, a1o a 2 [a= ( J, T, seniority)]. We also make 
use of the facts that 84 = S( = 8d = 1, T4 = T4 = Td 
= 0, J 4 + T4 is even, L4 + 84 + T4 is odd; 

W is a Racah coefficient ; 

f is the sum of all the parameters of the 12j symbol; 

6 is the angle between kd and 1/2 kd- kp; 

00 

Ekd, kp (l, k, lz, L) = Vo/'-L ~ ~ fk (ri> r2) h, (+ kdrz) j L (\ + kd- kp l r1) rpf (r) rp 1 (r2)rir~dr1dr2 , 
R 

where cpz ( r) is the radial part of the wave number 
of a bound nucleon with the orbital angular momen-

tum l; fk ( r1o r 2 ) is defined in terms of the inter­
nal wave function of the deuteron 
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z.d(r1 -r2) =hftdrt, r2)[k]Pk(COSWt2), 
h 

in particular1•9 

e-ru., / r12 = oc h [k] jh (iocrJ) h<~> (iocr~) Ph (cos wl2) 
k 

for r 1 < r 2 ; v0 = 47rti2 Ma [the interaction poten­
tial of the nucleons is taken in the form Vo<'> ( r 1 -

r2 )]. 
.n 

1; = -4~ (C1·;.~i;, MT/ [Jr] [J 2J [j] [T rJ ~ C ~~':_2cx,; j'cx, 

"Cin-1"'' Ci'l-2cx, fT2 Tt" l {T2 :~ :} [T j'l• [T:(' 
A in-3cx,; j'cx, in-3cx, l't Ts T7j -; Ts T7 5 o 

where 

Akd (12 , Ls) = 4'ITi-L' ~h. (kdR) y ~ •. M, (Rd) xd (r) 
R 

r 1 + rz . x 'I:"t'L,M, (r1r2) dr1dr2, Rd = ~-2~ , r = r1- r2, 

00 

Bk (l, lp) = 4'ITi 1 PV0 ~cp~(r)itP(kpr)r 2dr; 
P R 

p33 = J 1 + J 2 - s + 1 + b + c + J 7 + J7; in the sum­
mation we use the facts that Sa = Sd = 1, Ta = Td 
= o, Ja + Ta is odd, La + S8 + T8 is odd; y is the 
angle between kp and ~. 

(10) 

for the reaction A ( d, p) A + 1. 
The calculation of the radial integrals B, D, 

and E is simple in principle. We can make an 
estimate of the integrals A if we extend the in­
tegration over the entire region and use oscillator 
wave functions for the bound nucleons, which makes 
it possible to use a simple transformation to sep­
arate the motion of the center of mass of two nu­
cleons from their relative motion. 1° For the inte­
grals B, D, and E it is natural to use as the 
wave functions of the bound nucleon the functions 

h11) ( Kr). They are normalized in the following 

way: 11 [c,oz(R)/h11)(KR)]h11)(Kr); c,oz(R) isthe 

amplitude of the single-particle wave function at 

.the surface of the nucleus. The Wigner limit for 
the reduced width corresponds to the value of 
c,oz(R) given by: 12 R3 [ c,oz(R)]2/2 = 1. 

The usual theory of stripping involves only one 
radial integral Dkd, kp ( l), and its absolute value 

does not affect the angular distribution. Use of 
plane wavea in the crudest sort of calculation gives 
for the particles topping the barrier an increase 
of the radial integral by a factor of five to seven, 
in the case of reactions with light nuclei. 11 •13 The 
facts show, 14 however, that the relative values of 
the absolute cross-sections for cases of capture 
of nucleons with different values of l are well 
reproduced by the expression D2 ( l). 

Our results involve a large number of radial 
integrals, so that the crudeness with which they 
are estimated makes the results, generally speak­
ing, rather indefinite. Nevertheless the fact noted 
above allows us to hope that for each series of in­
tegrals the dependences on k, L, Zp, and so on 
are given correctly, so that in the calculation of 
angular distributions we can try to confine our­
selves to the two unknown constant coefficients 
of I2 and I3, with a crude preliminary estimate 
of their order of magnitude. 

The calculation of the expressions containing 
spherical functions can be carried out more simply 
by directing the z axis along one of the momenta, 
for example !kd- kp. or kd, etc., depending on 
the particular term. 

3. CONCLUDING REMARKS 

The cases that are the simplest and most inter­
esting to analyze occur when one or two of the three 
terms in the expression (6) for the matrix element 
vanish. If n = 1, there remains only Il> and we 
arrive at the usual formulas of the theory of strip­
ping. If n = 2, the term in I3 vanishes. If we 
consider the inverse process, the proton is inci­
dent on an odd-odd nucleus with two nucleons out­
side a closed shell. The structure of the expres­
sion (6) for the amplitude I2 shows that I2 is the 
reaction amplitude for the process of "knocking 
out" of a deuteron from the nucleus by the proton, 
which is itself bound in the final state. I~ corre­
sponds to the process of "heavy particle strip­
ping,"15·16 although it is not a complete expression 
for the squared amplitude of this process. In this 
case the angular distribution will have a maximum 
in the backward hemisphere. I~ will evidently not 
have this peculiarity, since the "knocking out" of 
a particle is as a rule associated with a maximum 
in the forward part of the angular distribution. This 
argument agrees qualitatively with the angular dis-
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tribution17 of the protons from the reaction 
B10 ( dp) B11* ( J* = ! - ), which is mainly due to a 
term of the type 1~. In fact, in a case in which 
Jfin = J 1 cannot be obtained by vector composi­
tion of Jinit = J 2 and j, 11 = 0, i.e., ordinary 
"stripping" is "forbidden" in the shell theory. 
There remain the terms in 12 and 13• An ex­
ample of this latter type occurs in the reaction 
B10 ( n, d) Be9* with formation of the Be9 in the 
first excited state J* = ! -. 

For the calculation of the cross-section of the 
reaction B10 ( d, p) B11* mentioned above, the final 
formulas must be changed somewhat, since the 
final nucleus is described by the configuration j 6j', 
. 3/ ., 1/ 
J = 12 -, J = 12 -. 

In conclusion the writer expresses his gratitude 
to K. A. Ter-Martirosian for a discussion of the 
statement of the problem. 
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Page 

533, title 

645 Eq. (1) 

647 Eq. (11) 

894 Eq. (12) 

897 Eq. (45) 

979 Table II, heading 

1023 Figure caption 

1123 Eq. (2) 

ERRATA TO VOLUME 8 

Page 

375 Figure caption 

816 Beginning of 
Eq. (8) 

Reads 

Nuclear magnetic moments 
of Sr87 and Mg95 

· · · + >< iFio (io +1) 

(L + 1) I BZ i 2- L I Bt 12 

\.l ... 
en= 1- LIJircJ(.L. 

lEy> 50 Mev i EY >50 Mev 

r = fL•I!lt 

Reads 

a) positrons of energy up 
to 0.4 E, b) positrons 
of energy up to 0.3 E. 

I~= (4n)2 ... 

Should Read 

Nuclear magnetic moments 
of Sr87 

••• -- >< V io (io + 1) 

L (L + 1) [ [ BZ 12 -! Bt i' J 

1 \.1 ... 
en = - L.J ]l;t (1. 

1Ey<50Mev !Ey>50Mev 

a) W < WH , b) W > WH 

Should Read 

a) positrons of energy up to 
0.3 E, b) positrons of 
energy up to 0.4 E. 

1~ = (4n)5 ••• 




