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The low-frequency electron-ion longitudinal oscillations in a plasma confined by a magnetic 
field are considered. 

IT is well known that a plasma is capable of two 
kinds of oscillations: high-frequency electronic 
oscillations, and low-frequency oscillations in 
which both electrons and ions take part. The theory 
ofthe low-frequency oscillations has been devel­
oped by Tonks and Langmuir,1 Gordeev2 and others. 
In the present paper we consider the low-frequency 
longitudinal oscillations of an unbounded plasma 
which is confined by a fixed, uniform, magnetic 
field. 

1. DISPERSION EQUATION 

We consider small oscillations of a plasma con­
sisting of electrons and singly charged ions. It will 
be assumed that the oscillation frequency is high so 
that the collision integrals can be neglected in the 
kinetic equations which describe deviations in the 
electron ( ion) distribution functions from the equi­
librium values. Suppose that at time t = 0 we turn 
off the external effect which causes the plasma to 
deviate from the equilibrium state. After a suffi­
ciently long period of time t the Fourier compo­
nent of the electric field intensity will be propor­
tional to exp { - iwt - yt } where the frequency w 
and the damping factor y are determined from a 
dispersion equation of the form 

An'4 + Bn'2 + C = 0, n' = kc fw', 

where w' = w - iy and k is the propagation vec­
tor. Expressions for the coefficients A and B 
and C are given in reference 3. If the individual 
terms which appear in A are much larger than 
I B/n' 2 1 and I C/n'4 1 an approximate solution of 
the dispersion equation can be obtained by setting 
A= 0. The equation A= 0 is the dispersion equa­
tion for oscillations characterized by curl E R:J 0 
(longitudinal plasma oscillations). Thus, we have 

A (w', k) = 1 + Ke + Ki = 0. 

where3•4 (a = e, i) 

(1) 

"' 

1 
Ka=-k• 2 + 

a" 

iw' ( . , "} 
- 2- exp - [.ta sin- u 
k 2 a" w~ 

x ~ exp (---}[La cos2 6q;2 + :~ q; +[La sin2 6 cos 9) de;;, 
0 H (2) 

a" = (T" /47te2n0}''•, .Q" = ( 47te2n0 I m")'l•, 

Here e is the angle between the direction of the 
external magnetic field H0 and the propagation 
vector k, wj1 = eH0/mc is the gyromagnetic fre­
quency for a particle of mass ma and charge e 
(the subscript a = e refers to electrons, a = i 
refers to ions ) T a is the temperature of the gas 
of particles of type a and n0 is the equilibrium 
electron density. 

The quantity Ka can also be given in the form 

Ka.=-1-
k2 a~ 

1 "' z" e-t• 
-llaBln'a 'V I ( · 2") o ~ --dt - -2-e ..:::.J n [La. sm u ,;-- " t , 

k2 a r rc zn-
« n--oo C 

z~ = (w'- nw~) I V2 kv~ cos 6, 

(3) 

where In is a Bessel function of imaginary argu­
ment. The integration over t in Eq. (3) is taken 
over the path C which goes along the real axis 
from -co to +co, going around the singularities 
t = zi{ from below for cos e > 0 and from above 
for cos 8 < 0. Below, it is assumed that cos e > 0. 

Equation (3) for Ka is obtained from Eq. (2) by 
expanding exp ( + J.l.a sin2 e cos cp) in Eq. (2) in 
powers of eicp and using the relation following 
between the integrals over the contour C, which 
appear in Eq. (3), and the probability integral: 5 

1 ~ -t• ( 2. ~~ ) ,r- _!__t dt = - i v;e-z' 1 + --~ e1' dt . 
rrc z- \ Vrc c 0 

(4) 
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2. INVESTIGATION OF THE DISPERSION EQUA­
TION 

The dispersion equation (1) is extremely com­
plicated and can be solved only in certain limiting 
cases. If the phase velocity of the oscillations 
Vph = w/k is much larger than the mean thermal 
velocity of the electrons v~ in Eq. (1) Ki can 
be neglected compared with Ke. The resulting 
dispersion equation 1 + Ke = 0 describes the high­
frequency oscillations of the plasma. This equation 
has been investigated in detail in reference 6 and 7. 
Below, we study the oscillations for which 

v~~VP.h= wj k~ v~ (5) 

(low-frequency oscillations ) in three different 

cases: weak magnetic field, wfi « kv~; strong 

magnetic field, wk » kv~; the intermediate case, 

· h' h e kve d i kv i m w 1c wH » T an wH « T' 

In order to investigate Eq. (1) we use the asym­
ptotic expression for the integral in (4) (large val­
ues of z) 

1 ~ e-t• 1 1 3 . - , 
Y - --, dt ~ - + 23 + -4 5 + ... - l 117te- z , "' z- z z z 

c (~ 
I RezJ ~ 1, Imz~ 1. 

At small values of z the function in (4) is conve­
niently expanded in powers of z, in which case 

1 ~ e-t• -
--= - 1 dt = - i V 7t + 0 (z), 
Vrr z-

c 
Jzl~ 1. (7) 

(a) Suppose w~ « kv~ (weak magnetic field). 

Then the following inequality holds: wk « kv~ . 

Expanding cos cp in Eq. (2) in powers of cp and 
taking account of the inequality in (5), we have 

1 + i v; z, + . . . v-
K, = , Ze = w' I 2kv~, \zel ~ 1; (8) 

k2 a~ 

(9) 

Kt = -~(._1_2 -t---; + · · ·), Zt = w' I V2kv~. lzt I .::P 1. 
k2 a1 ,2z1 4.z1 

Substituting Eqs. (8) and (9) in Eq. (1) and solving 
for w', we have 

w2 = w~ + 3 k2vi.f, w0 = .Q;kae (1 + k2a~)-'l•, (10) 

, / rrme 0.1 ka, 
'I'= Yo= V 8m1 (1 + k•a~)• (11) 

The frequency equation (10) (for v~- 0) was 

given by Tonks and Langmuir .1 The correction 
·2 

3k2v~ which takes account of the thermal spread 

in the ion velocities and the damping term (11), 
were given by Gordeev .2 The introduction of a 
magnetic field results in the appearance of an 
additional small term in the expression for w2: 

The condition I ze I « 1, which must be satisfied 
if (8) is to hold, is always satisfied since 
(me /mi )1/2 « 1. The condition of applicability 
for the expansion in (9), I Zi I » 1, can be used if 

(12) 

i.e., the plasma must be highly non-isothermal. If 
this is not the case the low-frequency oscillations 
are highly damped: y ,.., w0• According to Eqs. (10) 
and (11) the damping factor is small compared with 
the frequency y/w,.., (me/mi)1f2. The damping 
factor (11) is due to the "remote" collective inter­
actions of the particles. The plasma oscillations 
also are damped by "local" collisions. 

(b) Intermediate case. Suppose now that the fol-
2 2 

lowing inequalities hold: Cwfi) » ( kv~) and 

w~ « k2v~ or 

(13) 

Because the ratio mi /me is very large ( approxi­
mately 103 to 105) there are values of wfi /kv~ 
(even when Ti « Te) for which the inequality in 
(13) is satisfied. 

If the condition in (13) is satisfied, we can use 
the earlier expression for Ki (9). In computing 
Ke, we assume that because of (13) JJ.e « 1. 
Hence, from Eq. (3) we find, (assuming that 
I z~ I « 1 for values of (} far from 'IT/2) 

(14) 

Substituting Eqs. (9) and (14) in Eq. (1), we ob­
tain the earlier expression for the frequency (10), 
and the damping term 

r = 'Ia 11 cos a i. 
As (} increases the damping term also in­

creases. However, when (} approaches 'IT/2, 

(15) 

Eqs. (10) and (15) no longer hold since these equa­
tions were obtained under the condition that I z~ I 
« 1, which is satisfied only when I'IT/2 - (}I » 
(me /mi )1/2. 

We assume now that I z~ I » 1 (n = 0, ± 1, ± 2). 
Then, by virtue of Eq. (6) we have 
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o; sin2 6 

w'2-w~ 

[ 6-3u.+u~ sin•6 ](16) 
X cos4 6 + 3 (1 _ u.)a cos2 6 sin2 6 + (1 - u.) (1 _ 4u.) 

. (1t ro' 2:"" ~L1nl sin21nl6 _,2 , 
l - e n u -- w• w 2 + 2 k•a2 jJ I cos 61 In I! 21nl ' e - ( HI ) . 

e e n--co 

Substituting Eqs. (9) and (16) in Eq. (1) and neglect­
ing the thermal corrections we have 

!.12 cos2 6 !.12 sin2 () !.12 

1--•-2-- e -~ = 0. 
(l) (1)2 -cu;j (1)2 

(17) 

Neglecting the last term in Eq. (17) for values 
of e far from 7r 2, we find the resonance fre­
quencies of the electron plasma oscillations in the 
"hydrodynamic" approximation: 

(18) 

w~.2 = w; = + (.Q: + w~i) + + [( n: + w"Jy- 4Q:w"J cos2 e r 
When e -11"/2 

wi = n: + w"J; w~ = n;w"Jcos2 6 I (n: + w"J). (19) , 
Equation (19) for w2 applies if 171"/2 - e 12 » 
me/mi. If, however, 171"/2 - e 12 < me/mi, from 
Eq. (17) we have 

w~ = ;;;2 = .(n:cos2 e + nn 1 (1 + n: 1 w"J). (20) 

Taking account of the correction terms in Eqs. 
(9) and (16), we find the frequency and the damping 
term 

(21) 

~ 1 { Z? o; 3k2 v~~ o; 
8 = 2(1 + o:;ro"J) - ro'i: + ;;;'4 

(22) 

+ 3k2v~2n;rco:•e_ :?s•e. + _1_)}. , 
\ ro4 3ro2 roj; 4ro'i: 

(23) 

The inequalities I Zi I » 1, I z~ I » 1, I € I « 1, 
and y 2 « w are satisfied if kae « 1 ~nd kai. « 1. 

(c) In the strong field case, when wi-J » kv~ 
and wfl » k~, when I z~ I « 1 we can use Eq. (14) 
for Ke; when I Zn I » 1 we can use Eq. (16) for 
Ki (in Eq. (16) we replace Te by Ti and me by 
mi). Equation (1) then assumes the form 

!Jj sin2 0 

(1)'2-(l)~ 

{ 6-3u.+u~ sin•e } 
X cos16 + cos2 e sin26 ' ' + (24) 

3 (1 - uy (1- u;) (1 - 4u;) 

+ i Vi kaa; !J:I,cos ()I= 0, U; = (w~l w)2 . 

From Eq. (24) we find the resonance frequencies 
w1, 2 of the electron-ion oscillations in a strong 
magnetic field: 

(25) 

where 

;;;2 = ~ (w2 + wf2)'+ ~ {(w2 + wi:2)2- 4w2wi2 cos2 6}'/• 
± 2 0 H-2 0 H OH (26) 

are the resonance frequencies when the thermal 
motion of the ions is neglected; €± determines 
the corrections for w1 and w2 due to the thermal 
motion of the ions 

(27) 

[ 
4 6-3u+ +u; 2 • 2 sin• a ] 

X cos 6 + 3 (1 _ u:::Y cos 6 sm 6 + (1 _ u±) (1 _ 4u±) , 

The damping factor corresponding to the frequen­
cies w1, 2 is 

(28) 
- ~4 

-./rc ro± 
l1,2= V 8 k3a!lcos6j[cos2()+sln2 6z;~/(z;;,-ro~)2].\le.\l~ • 

Eqs. (24) and (28) apply if the inequalities I z~ I 
» 1 and I z~ I « 1 hold. The inequality I z~ I » 1 
is satisfied for values of e far from 71"/2 and if 
the plasma is highly non-isothermal, Te » Ti. 
The condition I zh I » 1 (n = 1, 2, ... ) holds if 
w+ is not close to nwk. The inequality I z~ I « 1 
is always satisfied fqr values of e which are not 
close to 71"/2 3;lld wk < w0 because me « mi. 
If, however, wi-J > kv~, the inequality I z~ I « 1 
is satisfied only for one of the solutions of Eqs. 
(25) to (28), w = w0 cos e, y = 'Yo cos e. 

As e- 0, one of the solutions of Eq. (25), w1 

~ w+, approaches the expression given ,in (10) 
while the other w2 ~ w_ approaches wi-J How­
ever, at small values of e Eqs. (25) to (28) for 
w2 and y 2 do not apply since the condition I z} I 
» 1 does not hold at values of e close to 0. If 
at 1=1mall values of e the inequality I wJ. - wfJ I » 
kvt does not hold when w1 ~w+, Eq. (27) (ther­
mal frequency correction) and Eq. {28) {damping) 
are not correct. When I w - wk I « kv~, the 
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. e-t2 dt 
mtegral J i ~ - i 7T. Thus we find 

z 1 - t 

If, at some v~lue of (), not close to 1r/2 it 
turns out w-1; ~ 2wk, then the inequality I z~ I » 1 
no longer holds and consequently Eq. (2~) for 'E+ 
is no longer valid. If I W+- ~wiJ I « kvf:r cos (), 
the integral which contains z~ in (3) is approxi­
mately equal to - i7T and gives additional damping 
at frequency w1. The additional damping also ob­
tains in the general case when I w+- mwi I < kvi 
x cos () ( m = 2, 3, ... ) H T 

II= Vi jcos3 tlJ[1+(;•_1) 2m4tg26] 

{ 
w~ sin2m 6kvj ( kvj \2m-4 . } (30) 

X Q2 n k2 aa + 2mml 7) exp (- z~) , 
z e e • H 

z;, = (wi- mw~) / (V2 kvj cos 6). 

The inequality y 1 « w1 for m = 3, 4 is always 
satisfied _for any value of () excluding () "' 1r/2 
since kvf:r « wiJ. When m = 2 this inequality is 
satisfied for small values of (). 

For () - 7T/2, from Eq. (25) we find 

Eq. (31) is valid if the inequality I z~ I « 1 is 
satisfied, i.e., if 

TC/ 2- 6J2 ~(wlHf kv~)2 +me/ m;, 

(31) 

from which it follows that Eq. (31) does not apply 
in the narrow region of angles about 7T/2. 

We now assume that I z~ I » 1 and I zh I » 1. 
In this case (16) applies for Ke and Ki. At val­
ues of () far from 7T/2 Ki is small as compared 
with Ke and can be neglected. In this case, using 
Eq. (1) we obtain the results given in references 6 
and 7. If, however, () "' 7T/2, assuming that w « 

wfi, from the dispersion equation we find w1,2 ~ 

~±• where 

.Q2 - 1 { i2 + .Q2 r.2 2 
r: - 2 (1 + n; I w~) WH i + ~~.cos 6 (32) 

+ [(w~ + n; + n;cos2 6)2 - 4 (1 + n; fw~) n;w~cos2 o]'''}. 

The damping of waves with frequencies given by 
(32) turns out to be small (exponential factor). 

In conclusion we may note that if the conditions 

jK;/~IBofn'2 j, /Kil~iCo/n'4 /, (33) 

are satisfied, when H0 ~ 0 we can approximately 
isolate the low-frequency longitudinal oscillations; 
these conditions are satisfied in cases (b) and (c) 
if 

k2c2 ~ n;. 
(In case (c) it is assumed that w± "' Wo "' wk and 
~± ~ ~i). 
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