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A derivation is given of the kinetic equations for the distribution functions of electrons and 
vibrations of a crystalline lattice. In the spatially homogeneous case, the equation for the 
distribution function of the electrons is identical to the kinetic equation in Bloch's theory 
of electric conductivity. An equation is obtained for the lattice vibrations, and expressions 
have been found for the frequency and the damping decrement of these vibrations. 

IN the present paper, the method of Bogoliubov1•2 p~ c 

has been applied to the derivation of the kinetic HF = .2} 2m+ vN .2} ~ o (q- q1) divq .2} (Q~1l 

equations for the electron and the oscillations of (I<N;N> 
(I<J<N) k 

(1) 
a crystalline lattice. Several very interesting re
searches, devoted to the theory of superconductiv
ity, have recently been reported. On the one hand 
there are the researches of Bardeen Cooper and 

3 ' ' Schrieffer, and on the other, the new method in 
the theory of superconductivity developed by 
Bogoliubov.4 In this connection, there is interest 
in the study of the kinetic equations for systems 
of electrons interacting with the lattice vibrations. 
However, for the purpose of finding a simpler ap
proach to the description of nonequilibrium proc
esses in solids, we limit ourselves in the present 
note only to the approximation leading to the Bloch 
theory, and do not take up the question of supercon
ductivity. We note that, in recently published 
works, 5•6 a derivation has been given of the quantum 
kinetic equation for electrons interacting with lattice 
vibrations, in the spatially homogeneous case. This 
equation is identical to the well-known equation of 
Bloch theory. The approximate kinetic equations 
have been obtained by us both for electrons and 
also for the oscillators of the crystalline lattice in 
the homogeneous case. Initially, the equations were 
obtained for the distribution functions of the elec
trons and the oscillators of the lattice in the classi
cal approximation; these have the form of the Fokker
Planck equations in phase space. Then a derivation 
was given of the kinetic equations for the corre
sponding inhomogeneous quantum distribution func
tions. 

Following Frohlich, we shall write the Hamil
tonian function for the system of electrons inter
acting with the lattice vibrations of a crystal in 
the form 

799 

2 

X sin k·q + Q~> cos k·q) dq + .2} .2} (P~i>'/2M + Mw!QV>'/2). 
k f-1 

Here N is the number of electrons, c is the inter'
action constant, which has the dimensions of energy; 

M is the mass of the ions; Q~), p~) are the co-

ordinates and the momenta of the lattice oscillators; 
j = 1, 2; Wk = ks is the vibration frequency with 
wave number k; s is the sound velocity without 
consideration of the interaction between the elec
trons and the lattice vibrations of the crystal. 
Making use of the Hamiltonian (1), we obtained the 
equations of motion for the electrons and for the 
oscillators of the lattice. Desiring to set up the 
kinetic equations for the distribution functions of 
the electrons and the waves of the crystalline lat
tice, we introduce the distribution functions of the 
coordinates and momenta of all the electrons and 
oscillators of the lattice of the crystal. This dis
tribution function can be normalized since the event 
that the coordinates and momenta of the electrons ' 
and lattice oscillators have any values at all, is 
certain. By virtue of the Hamilton equations for 
the distribution function f thus introduced, the 
equation 

__ c_ "11;1 cosk·q; ~ _ 
VN LJ . k U> - 0 

k, J,i- sm k·q, aPk 
(2) 
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is obtained. Here and below, the upper function 
refers to the term with j = 1, while the lower 
refers to j = 2. From this equation we can, by 
integration, obtain a chain of equations for the 
corresponding distribution functions. We have 
limited ourselves to the consideration of the 
equation only for the first distribution functions 
of the electrons and lattice oscillators 

f1 (q, p; t) F1 (Q~), P~); t), and only for one mixed 

second distribution function <I> 2 ( q · p; Q~), P~); t ). 

For brevity, we shall not write out the expansion 
here. (Where possible, we shall omit the argu
ments of the distribution functions in what follows. ) 
To obtain a closed set of approximate equations ac
cording to the work of Bogoliubov and Gurov, 2 we 
have made use of the following approximations of 
the second distribution functions: 

1!>2 (q, p; Qk, Pk; t) = fi (q, p; t) F1 (Qk, Pk; t) 

+ g(q, p; Qk, Pk; t), 

where g is the correlation function that governs 
the interaction of the electrons with the lattice vi
brations. The third distribution functions are rep
resented in the form of products of the correspond
ing first distribution functions. Here the interaction 
between the electrons and the lattice vibrations is 
assumed to be weak, and we can therefore regard 
the function of the correlation deviation g to be 
small in comparison with the products of the first 
distribution functions. In the approximation under 
consideration, the equations for f1, F1 and g 
take on the following forms: 

sin k·q 
~ + __p_~+ _c_ ,_, \ (Q<i>.k) F (Q P · t) at m aq v- ~ J k 1 k• k• 

N i,k cos k·q 
(3) 

k ofl c "\1 ~ k QU> sin k·q k ag dQ P x dQkdPk a = - v-- ~ c · k ) ap- kd k; 
p N i ,k cos k ·q 

"F ( p<il a "F )' _v_1 + '\;1 ~~-Mw2Q(j) _v_l_ 
at ~ M aQu> k k apU> 

j k k 

c 1 -1\' cosk·q aF 
- v----v~) . f1(q;p;t)dqdpk--ffi-

N i -Sill k·q apk 

1 • cos k·q a 
= vc_-LJ\ k---f>dqdp; V=VfN; (4) 

N v i j-sink.q aP~ 
(j) 

ag __p_ ag ~ (~ ~ _ Mw2Qu> ~) 
at + m aq + ~ M aQ~> k k ap~> 

I 

cos k·q sin k·q 
= _c_ "\1 k ~. f - _c_ ,_, lkQ(I)) k ~fl F 

V - LJ (') 1 v- ~' k d 1· 
N · - sin k·q ap~ N · cos k·q P 

1 I (5) 

If, with the aid of Eq. (5), we express the function 
g in terms of the first distribution function f1, F 1 

and substitute the expressions thus obtained in 
Eqs. (3) and (4), then we can get a set of equations 
for f1 and F 1> which serve for the description of 
random processes in the crystalline lattice with 
account of the previous history. General consid
eration of such a type of processes was carried 
out by Khinchin. 7 However, the solutions of these 
equations will naturally depend not only on the ini
tial values of the functions f1, F 1, but also on the 
initial values of the correlation function g. Inas
much as the initial value of g is usually unknown, 
we are obliged to consider the system of approxi
mate kinetic equations for the functions f1 and 
Fi> the solutions of which must depend only on the 
.initial values of the functions f1 and F 1. Such a 
system of approximate equations is valid only over 
time intervals that exceed the correlation time. 
This corresponds to the fact that, in the solution 
of the equation for g, the time dependence of the 
correlation function is determined by specifying 
the first functions f1 and F 1 at this same instant 
of time. 

Wishing to obtain from such a system of equa
tions for f1 and F1 a separate approximate 
equation for the electron distribution function f1 
with accuracy up to c2, we assume that at the 
initial instant the lattice vibrations are in equilib
rium, while the states of the electrons depart little 
from the equilibrium state. In this case we must, 
by way of the initial distribution of the oscillators 
of the lattice, substitute in Eq. (5) the solution of 
the equation for F1 at c = 0; this has the follow
ing form: 

F~0> = B exp {- 2J (PU>'; M + MwkQ~>')j2xT} . 
I 

In transforming the left side of the equation for the 
function f1, (by virtue of the required accuracy ) 
we require a more detailed solution of the equation 
for F 1'> namely 

p _ p<o) (QU)o pU>o. t) + _c _ ___!_ 
1-1 k•k•O VJiv 

2 t-t, COS k·q ( oFi0 ) ) 

X 2J ~ ~ . fi (q, p; t- fi) dq dp k ap<l> dfi. 
1-10 -Sill k.q k o (6) 

Here 
p<il 

Q~>o = Q~> cos wkfi- M:k sin wkO, 

pf.ilo = MwkQ~> sin wke + PU> cos wke, 

( ... )o means that Q~)o, pU)o must be substituted 

for QU), PU) after differentiation. After the elimi

nation of the functions F 1 and g from Eq. (3), we 
obtain the k.inetic equation for the distribution func-
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tion of the electrons, interacting with the lattice vi
brations of the crystal, in the form of the Fokker
Planck equation in phase space: 8 

att + p ar1 c2 ~ 
7ft m ·--aq--- 4rcMs2 q 

X 
aa· f1 (q', p'; t-1 q- q' !Is) at 

q d 'd ' 1 
I q-q' I q pap ~ 

I q-q' I <s(t- t,) 

a a a ( ) =ali· B (s; P)-ap f1 (q, p; t) + ap A (s; p) fr(q, p; t). 7 

Here A and B are the Fokker-Planck coefficients 
for the given system: 

B (s, p) = 8::~~ · ~ o ( wk- k:) k2dk, 

A (s; P) = -n8-;rc~""·~.,.,s'"•-~ wkkll ( wk- k~) dk. 

We note that the coefficients of "diffusion" and 
"friction" in Eq. (7) are different from zero only 
upon satisfaction of the radiation condition. It is 
natural that, in the classical approximation, the 
Fokker-Planck coefficients A and B diverge 
for large wave numbers k. However, we can 
break off the integration over k at some value 
kmax which can be chosen from the Debye tem
perature ®: kmax == K® /tis; K is the Boltzmann 
constant. After integration over k, the coeffi
cients A and B take the following form: 

A"=~ (~)D(x)· B"il = czmxTv (~)D(x) 
4rcMs2p 1i.s ' 4rcMs2p "lis ' 

where 
X 

D (x) = _!_ _ _\· y'dy , e 
x4 .) eY - 1 X == T . 

0 

In the equilibrium case, Eq. (7) is satisfied by the 
Maxwell distribution. The region of integration on 
the left side of Eq. (7) is bounded by the condition 
I q-q'l :::: s ( t- t0 ). This limitation of the integra
tion over q' arises from the fact that the problem 
is considered when, at the initial moment t == t 0, 

the distribution functions of the electrons and the 
oscillators of the lattice are given. Therefore, the 
only electrons that can have an effect on the change 
of the function f1 at the point q and time t > t0 
are those removed from q by the distance I q- q'l 
:::: s ( t- t 0 ), since in this case the electrons inter
act only through vibrations of the crystalline lattice. 

The approximate kinetic equation for the distri
bution function of the oscillators of the lattice is 
similarly constructed. Only now we must consider 
the initial distribution of the electrons at equilib
rium. On the other hand, the initial state of the 
lattice vibrations here must be assumed to differ 
slightly from the equilibrium state. As a result, 

the equation for the distribution function F 1 has 
the form: 

Here 

. k·p ' X smm 6-dpdPk; 

fio) is the equilibrium distribution function of the 
conduction electrons. In the case of thermal equi
librium, Fi0> does not make the right side of 
Eq. (8) vanish. Because of the presence of the inter
action, the stationary distribution of the waves of 
the lattice, by virtue of Eq. (6), takes the form 

F1 (Qk, Pk) == F~0)(Qk, Pk) + c2F~1)(Qk, Pk), which 

agrees with the assumption of Peierls.9 

Upon the derivation of the quantum kinetic equa
tion for electrons and phonons, we start out from 
the equation for the quantum distribution function 
(the density matrix in the mixed representation) 
in the form set forth by Wigner. As a Hamiltonian, 
we again use Eq. (1). In the self-consistent approxi
mation for the quantum distribution function of the 
conduction electrons f1, we find: 

_f1(q', p'; t- I q -q' +i-r/21 /s)J 
I q -q' +h/2 I 

X ei*I-P) f 1 ( q, Yj; t) d-. dYJ dp' dq' = 0. (9) 

The region of integration over q' in this equation 
is limited by the condition I q -q' ± tiT/21 :::: 
s ( t- t0 ), where the upper sign refers to the first, 
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and the lower, to the second, integral. For F~0) 
we have used the expression for the quantum dis
tribution function of oscillators obtained in refer
ence 10. Account of correlation permits us to 
compute the change in the distribution function f1 

at the expense of the "collision" of electrons with 
the lattice waves, which can be represented in the 
form of a set of three expressions. The first of 
these is similar to the diffusion term in Eq. (7) and 
can be written in the form 

~ "' T {o(L- (p+"hk)' -n \ 
s'"hMN .LJx k 2m 2m W~.:j 

k 

X [tdP + nk, q; t)- fi(p, q; tl] 

+ o ( {~ - (P im"hk)' + t.wk) ffi(p + ttk, q; t)- fi(p, q; t)l}, 

where 
1 "hwk 

xTk = 2- 1twk + exp t"hwkjxT} -1 

the second is similar to the term of systematic 
friction and has the form 

7tC_
2 

- "' nwk {o (-L - (p + 11k)2 + 1t ) 
s'"hMN .LJ 2 2m 2m Wk 

k 

X [f.dp + nk, q; t)+ fr(p, q; t)J 
, ( p• (o + "hk)' ) . . }· - 0 2m - 2m -nwk lf1 (p + lik, q, t) + f1 (p, q, t)] , 

while the third is due to exchange effects and has 
no classical analogue: 

vs•u:'~ (2r.)3 h r~ (l)k sin wk& sink ( q-q'- ~ 6) 
k 0 

x[s("'I-P+;~)-o("'I-P- n2k·)]f1 

m lt"C '· m lt"C n. ( q +q' _.!l, 6 ) (q+q'-21..6 ) 
X 2 + 4, "', t fl 2 -4,"', t 

+ i't ( 7t' ~ r." - '1)} d6 dq' d.,.' d"'" d'C dYj. 

Joining these together, after substitution in the 
right side of Eq. (9), we find the quantum kinetic 
equation for the electrons in the inhomogeneous 
case. For a homogeneous distribution, the ex
change term is materially simplified, and the equa
tion for the distribution function of the electrons 
takes the following form: 

~(p;t) =~ ~{o(L_(p+nk)' -tt )[-N 
iJt s'nMN .LJ 2m 2m wk lt"'kw 

k 

X(p + 1tk)(1- w (p))- (N11"'k + 1twk) w (p) (1- w(p + ttk))] 

+ o ( {~ - (p t:k)' + t.wk) [(Nt;"'k + 1twk) w (p + 1tk) 

X (1- w(p))- Nt;_"'kw(p) (1- w(p + nk))l}. (10) 

Here 

Nt;"'k=nwk(e'l"'kJxT -1f1; w(p; t)= (2r.n)s f1 (p;t). 
v 

This equation is identical with the well known equa
tion of Bloch theory. 9•11 Relative to the quantum 
kinetic equation for the distribution function of the 
phonons F 1> we note that it preserves the form 
of Eq. (8), with this one difference, that the expres
sions for the potential (8) and for the integrals I1 

and I2 are changed. From Eq. (8) we get the av
eraged equation of the vibrations of the crystalline 
lattice, which, for a homogeneous distribution of 
electrons, has the following form: 

(11) 

where 

In the case of complete Fermi degeneracy for the 
electrons, the frequency of the characteristic vi
brations Qk and the damping decrement Yk of 
the lattice waves are easily computed: 

(12) 

where E0, Po are the limiting values of the energy 
and momentum for the Fermi distribution. 

The value for Qk corresponds to the expres
sion obtained in the work of Frohlich. 12 For the 
estimate of the value of the damping Yk• we can 
use, for example, the tabulated data for ( c/ Eo) 
given by Bethe and Sommerfeld.9 

We note that in a number of cases it is not pos
sible to obtain separate equations for f1o F 1 from 
the approximate (in the sense given above) sys
tem of equations for the distribution functions of 
the electrons and waves of the crystalline lattice. 
We must then solve simultaneously the set of equa
tions for these functions. In our treatment, we 
started from the Hamiltonian of Frohlich, in which 
neither the periodic field of the ions nor the inter
action between the phonons and the Coulombic inter
action between the conduction electrons were con
sidered. Employing the results of the present note, 
we hope in the future to consider more accurate 
kinetic equations for the electrons and the vibra
tions of the crystalline lattice. 

In conclusion, we wish to express our gratitude 
to Academician N. N. Bogoliubov and D. N. Zubarev 
for discussion of the present research. 
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