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A relation is obtained which connects the product of the wave functions of two free relativ­
istic particles of given masses and spins with the wave function which describes the free 
motion of the system as a whole. This relation is the analogue of the Clebsch:...Gordan re­
lation for the composition of angular momenta. By means of this relation one can obtain 
formulas for relativistic polarization and correlation effects. Lorentz transformations 
are obtained for arbitrary tensor moments.* 

1. In recent years a number of papers (for exam­
ple references 2 and 3) have given general formu­
las expressing the cross section, the polarization, 
and other quantities characterizing the scattering 
of spinning particles, in terms of the matrix ele­
ments of the S matrix. Analogous formulas also 
exist for the correlation effects. The purpose of 
the present paper is to give the relativistic gen­
eralization of these results to the case of arbitrary 
spins of the colliding (or correlated) particles. 

In the theory of angular momenta a large part 
is played by the Clebsch-Gordan expansion, which 
connects the product of the wave functions of two 
physical systems (with given angular momenta) 
with the wave function relating to the total angular 
momentum of the system as a whole. In dealing 
with collisions of two relativistic particles one 
has also to compound four-momenta and four­
dimensional angular momenta. We shall show 
that a relation analogous to the Clebsch-Gordan 
expansion can be derived for the simultaneous 
composition of these quantities. For this were­
quire the wave functions describing the free mo­
tion of relativistic particles, and the Lorentz 
transformation of these functions. 

2. A nonrelativistic particle of mass K and 
spin i is described by a wave function 

in which the arguments are the momentum p 

(1) 

(- 00 < P1, P2•· P3 < oo) and the spin component mi 
(mi = -i, -i + 1, ... i). Besides its mass and 
spin, the particle can possess other invariant 
characteristics (for example charge), which we 

*The formula for the relativistic polarization effects has 
also been obtained independently by Chou Kuang Chao and 
M. I. Shirokov at the Joint Institute for Nuclear Research.1 
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shall identify by the index a. On going over to 
the relativistic case we first have the question 
of what variables must serve as the arguments 
of the wave function of the particle. A unique 
answer (apart from the possibility of a similarity 
transformation) to this question is found in the 
theory of the representations of the inhomogeneous 
Lorentz group: the free motion of a particle of 
mass K and spin i is described by a wave func­
tion (1) that depends on the same kinematic vari­
ables p, mi as in the nonrelativistic case. The 
transformations for space and time displacements 
and for spatial and Lorentz rotations are given by 
the infinitesimal transformations with the respec­
tive operators p, p0, M, N. For the wave function 
(1), according to references 4 and 5, these opera­
tors have the forms 

N - . v- a l,r- li xp] (3) 
-I ep (}p rep -~x, 

{J ' 

where 

Square brackets denote the vector product, and 
square brackets with minus sign as subscript de­
note the commutator. The slight difference be­
tween the forms of the operator N in Eq. (3) and 
in Eq. (11) of reference 5 comes from the fact that 
the corresponding wave functions differ by a factor et2 • In the present paper the wave functions 

lfinh ( p ) are so chosen that the invariant normali­
zation integral has the form 

""' \ d3 1 *><I ( ) ,f. ><i ( ) .LJ J P'fmt P -rm, P . 
mi • 

The operators defined in Eqs. (2) and (3) satisfy 
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the well known commutation relations, which secure 
relativistic invariance, 6 and this proves the cor­
rectness of the choice of the wave functions (1). 
The uniqueness and completeness of the treatment 
is assured by the fact that the operators (2) and (3), 
taken for 0 < K < oo and for all integral and half­
integral non-negative i, exhaust all the possible 
irreducible representations of the Lorentz group 
that are suitable for the description of free par­
ticles7 (expect particles with zero rest mass, 
which require some special consideration). 

3. Let us construct for the wave function (1) 
the operator of a finite Lorentz transformation to 
a system moving with the four-velocity ut.' = 
(u, iu0 ) relative to the initial system. This trans­
formation has the form: 

_ , + u (u,.x') I+ t' 
X- X Uo.+ 1 U ' 

t = ux' + Uot'. 
(5) 

To the transformation (5) there will correspond a 
transformation U of the wave function, 

tjl = U (u)tjl'. (6) 

The explicit form of the transformation (6) is 
uniquely determined by the relations (2), (3) and 
can be found, for example, by the method indicated 
in reference 8, which gives 

tJim1 {p) = ~ d3p'o {p'- p' {p)} V ep' I epD~1m; (p, u}lllm1 (p') 

= Vep• I epD~,1m~.(p.u)tjl~~ {p' (p)}, (7) 

where 

p' (p) = p + :~~~) - uep (8) 

is the transformation for the four-momentum, in­
verse to the transformation (5), and Dkimi (p, u) 
is the matrix of the three-dimensional rotation 
for the spin. (We remark that the indices mimi 
of this ni are transposed as compared with the 
corresponding indices in reference 9 ) . This ro­
tation can be specified by an orthogonal matrix 
aij which defines a rotation for an arbitrary 
three-vector bi: 

the matrix aij turns out to be given by 

" p1p1(u0 -1) u,p1 a1 1 = o · · _j_ - + _ ___:__,_---,----
'1 1 ep+x(epu0 -pu+x) epu0 -pu+x (9) 

+ p1u1 (- epuo + 2up- u0x- ep -x) _ u1u1 (ep- x) 

(ep + x)(epuo- pu + x)(u0 + 1) (u 0 + 1)(epu0- pu + x) 

It is obvious that the rotation is around the axis 
perpendicular to the vectors p, u. From the 

matrix aij one can determine the matrix nbimi 
for an arbitrary spin by the well-known relation 

. (D')-1 . D 1 
lj=afk lk . (10) 

For spin 1/ 2 the matrix D1/2 has been determined 
in reference 8 and is given by 

D'" = (ep + x) (u 0 + 1)- (u•~) (P·O'): 

V2 (u0 + 1) (ep + x) (u 0ep- up+ x) 

For spin 1 the matrix D1 differs from aij 
by the similarity transformation W: 

( 
I fl/2 - i I V2 

w = 0 0 

\ - I I V2 - i I V2 

(11) 

only 

(12) 

D 1 = waw-1 • (13) 

For higher spins (for example % ) it is conve­
nient to calculate the matrix ni not from the re­
lation (10) but from the matrices Dj for lower 
spins: 

L} (ilm;mJ I ilJm~) D~.JmJ 
JmJ 

(14) 
)', Dfn• 1 mP~·1 m1 (iltn';tn'I[ ilJmJ), 

m'tm'l 

where (ilmiml I iiJmJ-) are the vector-composi­
tion coefficients. 

The above-described matrix ni for the rota­
tion of the spin in a Lorentz transformation is a 
purely relativistic effect ( Thomas precession) 
without any nonrelativistic analogue. 

4. The Lorentz transformation (7) for the wave 
function (1), as developed in the preceding section, 
provides a possibility for obtaining the basic for­
mula of the present paper, the transformation from 
the wave functions of two free particles to the wave 
function of the system as a whole. 

The wave function describing a system of two 
particles with masses K1 and K2 and spins i 
and I has the form 

(15) 

The wave function 'q, of the system as a whole 
must depend on the total mass K, the total intrin­
sic angular momentum J, the component of the 
total intrinsic angular momentum, mJ, and the 
total momentum K; these quantities are defined 
by the relations: 

(16) 

ep = Y p2 + "i• Ep = V p~ + x~, (17) 

J2<fJ = J (J + l)'<P. (18) 

The relations (18) are prescribed in the center-of-
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mass system ( c.m.s. ), in which p1 + p2 = 0. 
The six variables K, K, J, mJ are not, how­

ever, sufficient for the description of the system 
(15), since the wave function (15) depends on the 
eight variables p1, p2, mi, mi. The two missing 
variables can of course be chosen to be invariants. 
For these two variables it is convenient to choose 
the orbital angular momentum l and the sum of 
spins s, taken in the c.m.s. 

J =I+ s, (19) 

1=11+12 , J2<P=l(l+I)<P, (20) 

s=i+I, s2 <P=s(s+I)w. (21) 

All the quantities in Eqs. (19) to (21) are also 
taken in the c.m.s. We now have everything re­
quired to obtain the transition from the two-y,article 
function 1/Jmi mi (Pit p2 ) to the function q,:{if/ ( K) 

describing the system as a whole. This transition 
will consist of the following transformations: By 
means of the respective transformations ni, ni 
defined in Eqs. (9) and (10) one translates the two 
spins into the c.m.s.; one then has further to go 
over from the momenta p1, p2 to the total mo­
mentum K and the half-difference of momenta 
p in the c.m.s. Since in this system the momenta 
of the particles are equal in magnitude and oppo­
site in direction, the momentum p is equal to the 
momentum of the first particle transformed to the 
c.m.s. by means of Eq. (8): 

(22) 

where the quantities K, ep , K are determined 
in accordance with Eqs. (16~ and (17). The matrix 
of this transformation is 

<PIIP> = Ver,lep 

in consequence of the well known relation 

d3p1 I ep, = d3p 1 ep = inv. 

(23) 

(24) 

If we write the momentum p in spherical coordi­
nates p, J., cp, then the angular variables will 
describe the relative orbital motion and will be 
related to the angular momentum l defined in 
Eq. (20) and its component mz, 

(&q:> llmz) = Ytm 1 (&q:>), (25) 

while the absolute value p can be related to the 
total mass K: 

(26) 

From Eq. (26) it follows that 

p2dp = dx pepEp I (ep + E p), (27) 

so that 

/ peE 
(p I xlmz) = v eP ~ ;P Ytm 1 (&q:>). (28) 

Now the spins i, I and the orbital angular momen­
tum l have been transformed to the c.m.s. We 
must compound these three angular momenta ac­
cording to the relation 

J=(i+I)+I (29) 

by means of the proper Clebsch-Gordan coeffi­
cients. On combining the transformations calcu­
lated above, we can write the desired relation for 
the transition from 1/J to 41: 

.t."•",il ( ) ""' D' I 'fm;m] PI> P2 = .L.J mtnt}(PI• K)Drnlm[(P2K)Yimz(&, ?) 

X (ilmim![ilsms)(lsmzms[lsJmJ) 

X V pep,Epl (ep +Ep) w~)s"•"•1r(K) 

= (p1p2mtm1 I V hx2il) I xJls K mJ) <P~)sx;><JI (K). (30) 

The summation is taken over the indices mf, ml:, 
mz, ms, mJ, l, s, J. The law of conservation 
of the four-momentum is taken into account by the 
relations (16) and (20). Mathematically the rela­
tion (30) is the expansion of the direct product of 
two irreducible representations of class P~m 
(cf. reference 5) of the inhomogeneous Lorentz 
group in terms of irreducible representations. It 
is entirely analogous to the Clebsch-Gordan ex­
pansion for the three-dimem>ional rotation group. 
By means of the expansion (30) the angular distri­
butions for arbitrary polarization and correlation 
effects can be expressed in terms of the S matrix 
parametrized in an invariant way. 

5. As an example let us consider the case in 
which a particle of mass K1 and spin i is incident 
on a particle of mass K2 and spin I, and the re­
sult is the emergence of particles with masses 
Kt, K2 and spins i', I'. It is obvious that the wave 

function ¢'i:A_~~I (Pit p2 ) of the initial state will be 
1 I . 'I' 

related to the wave function x~f£:r ( Pt, P2 ) of 

the final state in the following way: 

x"~:~t;rrx• (p~ • p~) = (p~ • p~m;m~ i V (x~x/ I') [ xJl's' K m J) 
mimi 

(xJls K mJ I v-I (xlx2i/) I PIP2mtmi)cji;:;;;;;t (PIP2), (31) 

where a, a' are indices for the channels, 
( ..... v-1 ..••. ) is the matrix inverse to the 
corresponding matrix in Eq. (30), and 
(a'Z's'KfK2i'I'iS(KJ)iaZsK1K2ii) isthe S matrix 
in invariant form. In virtue of the conservation 
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laws the S matrix does not depend on K, mJ 
and is diagonal in the total mass K and the total 
intrinsic angular momentum J. In practice it is 
of course more convenient to consider instead of 
the variable K the energy of the incident particle, 
and this changes the normalization factor. The 
formula (28) differs in the following essential ways 
from the corresponding nonrelativistic expression: 
firstly, in the transformations V, v-1 the mo­
menta are changed according to the relativistic 
relation (22), which is different from the nonrela­
tivistic relation 

(nonrel.) (32) 

and secondly, the transformation V contains the 
matrices ni, ni of the relativistic spin rotations. 
Finally, in Eq. (31) all the energy dependences are 
expressed in terms of masses. 

According to Eq. (9) the rotation ni (or ni) 
becomes a unit matrix if the three-momentum of 
the particle is parallel to the three-momentum of 
the system as a whole. Therefore, in particular, 
the rotations ni, ni are absent from the matrix 
v-1 in Eq. (31) if in the initial state one of the 
particles is at rest, or if the momenta of the two 
particles are parallel. 

Let us now go over from the wave function 

1/Jci ~~I ( P1, P2 ) to the corresponding density matrix 
1 I 'I 

(m{mi I pK1K21 (Pt> p2 ) I mimi)· For simplicity we 
give the further developments in symbolic form, 
without writing out the indices of the matrices. 
The relation (31) thus takes the form 

x = vsv-1<JI. (33) 

Corresponding to this the relation between the den­
sity matrices p of the incident wave and Psc of 
the scattered wave is written in the form 

Psc = V (S- 1) v-1 pV (S+- 1) v-1 . (34) 

As is well known, 3 the relation (34) contains a com­
plete description of the scattering of polarized par­
ticles. For example, the angular distribution, with 
a suitable normalization, is given by 

do I dQ = Sp Psc = Sp {V (S- /) v-1pV (S+- /) v-1}. (35) 

The polarization P is given by 

p = Sp {ipse}/ iSp Psc" (36) 

It can be seen from (34) that the relativistic 
effect of rotation of the spin does not appear in 
the scattering of unpolarized particles. In fact, 
in this case the matrix p of the initial state is a 
unit matrix with respect to the spin indices, so 

that the matrices D and D-1 acting on it from 
the left and the right cancel each other, and the 
matrices D and u-1 occurring in the V and 
v-1 at the beginning and end of the product in 
Eq. (35) cancel, because the trace is not affected 
by cyclic permutation of the factors. Nor does 
the use of a polarized target lead to the appear­
ance of the relativistic effect, since the matrix 
ni is unity for a particle at rest in the laboratory 
system. The relativistic spin effects can influ­
ence the cross section only in multiple scattering, 
for which the spin state obtained in the c.m.s. of 
the incident particle and the scatterer has to be 
transformed to the c.m.s. of the scattered par­
ticle and the next scatterer. Only in this case is 
the momentum of the particle not parallel to the 
relative velocity of the reference system, so that 
the corresponding spin rotation matrix ni can be 
different from unity. We emphasize that all the 
above considerations relate to effects connected 
with the spin rotation. 

The relativistic effects connected with the 
transformation of the momenta (forward bias of 
the cross section) occur in any scattering at suf­
ficiently high energy. 

6. For the study of the effect of the relativistic 
corrections on the polarization effects it is helpful 
to obtain a general formula for the transformation 
of the density matrix (i.e., the cross-section and 
all the tensor moments) in the passage from one 
Lorentz frame to another. The density matrix 
pgim{ (p) for the scattered particle transforms 
like the outer product of a wave function by its con­
jugate, taken for the same value of the momentum: 

p"i ,(p)~(-l)i'-m <jl~,(p}<jl*><i,(p). (37) 
m1 m1 -m1 

• I 

The factor ( -1 )1-mi and the minus sign on the 
mi in 1/J~gi ( p) are introduced so that the spin 
matrices can act on Pmimi from the left not only 
for the index mi but also for the index mi. From 
this we can get the transformation for Pmimi 
from the known transformations (2) and (3) for 
1/Jmi and 1/Jmi. 

By simple calculations one can show that the 
operators of infinitesimal transformations given 
by Eq. (37) for the function p have the forms 

P = 0, Po= 0, (38) 

M=-i[px:p]+i +i' (39) 

N = i ve;;-iJa lie;;- [(i + ~)x PJ. 
p ep x 

(40) 

1' denotes a spin operator composed of the same 
matrices as 1, but acting on the variable mi. 
From the relation (40) it follows that the density 
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matrix behaves under Lorentz transformations 
like the wave function of a particle with the spin 
1 + 1 . Therefore a finite Lorentz transformation 
for the matrix Pmimi (p) is given by a formula 
analogous to Eq. (7): 

(41) 

In particular, a rotation of the polarization vector 
P is determined by the matrix aij of Eq. (9) and 
is given by 

P=P'-- p(pP')(u0 -1) u(p•P') 
(ep+><)(epu0-pu+x)+ epu0 -pu+x (42) 

p (u.P')(- epuo + 2up- u0x- ep- x) u (u. P') (ep- x) 

+ (ep + x)(epuo- pu + x)(u0 + 1) (u 0 + 1) (epuo- pu + x) 

We note that it is clear from Eq. (42) that the 
relativistic effects manifest themselves not only 
in single scattering but also in double scattering 
from unpolarized targets, since the polarization 
appearing after the first scattering is perpendicu­
lar to the plane of the scattering and consequently 
is not changed by the rotation (42). For the spin 
% this result was obtained in reference 10. 

7. The exposition of the formal theory of scat­
tering usually begins with the step of representing 
the wave function as a superposition of incident 
and scattered waves, eikz + eikr f ( J. )/r. 

In the relativistic case, however, it is scarcely 
worthwhile to use this method, since in the coor­
dinate representation the wave functions for a 
particle with spin as a rule have redundant com­
ponents, which complicate the treatment, espe­
cially for higher spins. Furthermore a separate 
treatment has to be carried through for each value 
of the spin. The case of spin Y2 has been treated 
in this way in reference 10. It must also be noted 
that the question of coordinates in relativistic 
quantum theory is not a simple one. 11 

The impression may arise that the discussion 
that has been given has not been formulated in a 
relativistically invariant way. This is untrue, 
however. The point is that four-dimensional ten­
sors and spinors do not exhaust the possibilities 
for covariant physical quantities. Moreover, 
relativistic tensors and spinors transforming by 
nonunitary representations of the Lorentz group 
are, strictly speaking, in general not very suitable 
for the wave functions of relativistic quantum sys­
tems, since their norms are not definite. On the 
other hand, there exist unitary representations of 
the inhomogeneous Lorentz group, whose wave 
functions have positive definite norms. The func­
tions (1), transforming according to Eqs. (2) and 
(3), are just such functions. These wave functions 
are just as covariant as tensors, and the part of 
the tensor indices is played by the set of variables 

p, mi. An essential point is that these functions 
are covariant only with respect to the set of spin 
and momentum variables, and not with respect to 
each of them separately. 

The density matrix (37) is also a covariant 
quantity. According to Eq. (38) displacement 
transformations are unit operators for this ma­
trix, since it·transforms by a unitary representa­
tion of the homogeneous Lorentz group. A point 
of interest is the expansion of this representation 
in terms of irreducible representations, which 
will give a relativistically invariant classification 
of the possible angular distributions for particles 
with spin in an arbitrary reference system. 

Finally, we shall make one further remark con­
cerning the invariance of the parametrization of 
the S matrix in Eq. (31). The quantity 

(i + 1)2, (43) 

defined in an arbitrary coordinate system, is of 
course not an invariant. One finds, however, by 
direct verification that the quantity 

{(Dirl w1 + (Dlrl JDI}2 = s (s + I) (44) 

is an invariant, and in the rest system the expres­
sion (44) is the same as (43). In a similar way one 
can give an invariant definition of the intrinsic or­
bital angular momentum l. 

In conclusion I would like to thank Chou Kuang 
Chao and M. I. Shirokov for a helpful discussion 
and for information about their results. 
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