
SOVIET PHYSICS JETP VOLUME 35 (8), NUMBER 4 APRIL, 1959 

THE BEHAVIOR OF A PARTICLE OF ARBITRARY SPIN IN AN EXTERNAL MAGNETIC 

FIELD 

V. S. POPOV 

Moscow State University 

Submitted to JETP editor May 13, 1958 

J. Exptl. Theoret. Phys. (U.S.S.R.) 35, 985-988 (October, 1958) 

A method of disentangling given by Feynman is used to solve the problem of the way the 
polarization of a particle possessing a magnetic moment changes in an external magnetic 
field. 

IN the present paper we treat the problem of the 
change of the polarization of a particle possessing 
a magnetic moment under the action of an external 
magnetic field of arbitrary time dependence. The 
solution is obtained by means of a method given by 
Feynman1 for disentangling operator expressions 
containing noncommutating operators. This method 
has hitherto not been widely applied. It has been 
used to solve only one problem - that of the har­
monic oscillator subjected to the action of an arbi­
trary external force (cf. reference 1, Sec. 5, and 
reference 4). Therefore it is of interest to solve 
other quantum-mechanical problems by the Feyn­
man method, in order to elucidate the properties 
of this method and the difficulties that arise in 
applying it to concrete problems. One such prob­
lem, which can be solved completely by the Feyn­
man method, is considered below. The results 
themselves are not new, and are for the most 
part contained in a paper by Majorana,2 where 
they were obtained by a different method. 

Let us consider a particle with magnetic mo­
ment M = ytil. Here y is the gyromagnetic ratio 
and I is the spin angular momentum of the par­
ticle. The transformation of the wave function 
lj! ( t) from the time t to the infinitesimally dif­
ferent time t + ~t is accomplished by means of 
the unitary operator 

S (t, t + M) = 1 + iy H (t) I M = exp (iy H (t) I M), 

where H ( t) is the external magnetic field. From 
this we get for a finite time interval: 

N ~ 
(1) 

S (i2, i 1) = l~ n exp (iy H (t;) I M;) = exp [ iy ~ H (t) I dt], 
t, 

where in this formula t is an ordering parameter 
and indicates the order of action of the infinitesi-
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mal operators 1 + iyH (t) ~t. Because of the fact 
that the components of the vector I do not com­
mute with the exponent in Eq. (1) we cannot pro­
ceed with the usual rules familiar in analysis. 

We shall try to represent S ( ~, t1 ) in a 
"disentangled" form: 

S (t2 , t 1) = exp (af 1) exp (bl o) exp (ci'_1), 

_A 0 A ;.- 1\, A 

I±1=(+1x-tly)H 2, Io=Iz, (2) 

where a, b, c are for the present unknown func­
tions of the time. 

By means of Eq. (2) one can easily find the 
probability amplitude of a transition from the state 
I jm > at the time t1 to the state I jm'> at the 
time t2, since on using for the right-hand ex­
ponent the series expansion 

..... co ck "k 
exp (c/ - 1) = ~ kf I -1 

k-o 

we see that when it acts on 1/!jm only a finite num­
ber of terms of this series remain. Similarly, 
lJ!jm' exp ( af1) reduces to a finite sum, and conse­
quently the transition amplitude < jm' I S ( ~. t1) I jm > 
also contains only a finite number of terms. 

To disentangle the operators ih i0, L1 we use 
the following artifice: we break up H1I1 into a sum 
of two terms: 

HI= xi1 + (H1- x) I 1 + H0Io + H_l!_l, 

H±1 = (+Hx+iHu)!V'I, Ho=Hz 
(3) 

and apply to the first term the theorem on the dis­
entangling of an exponential factor proved by Feyn­
man (cf. reference 1, Sec. 3): 

t. 

S (t2 , t 1) = exp [ iyi1 ~ x (t') dt'] 
t, 

t, 

X exp (iy ~ [(H1 -x) I~+ H0I~ + H_1Ld dt} (4) 
t, 

t. tl 

I~ (t) = exp [- iyi1 ~ x (t') dt' J I~'-exp [iyi1 ~ x (t') dt']. 
tl tl 
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We set 
I, 

a(t) = iy~ x(t')dt' (5) 
I, 

and determine a ( t) in such a way. that the oper­
ator I1 in Eq. (4) may be completely disentangled. 
To do this we first find the explicit form of the 
operators I~ ( t). Let Ip. ( a) = e ai1 Ip.e -O!It ; 
differentiating with respect to a, we obtain the 
system of equations 

di 1 (rx)jdrx = 0, di 0 (rx)jdrx = -I 1 (rx), 

di _1 (rx)jdrx = -I 0 (rx) 

with the initial conditions Ip. ( 0) = ip.- The solu­
tion of these equations is 

II(rx) = 71 , Io(rx) = 10 -rxf1 , LI{rx) 
" .... cc.2 ..... 

=L1-rx/0 + 2 I1. (6) 

In an analogous way we get 

Now substituting the operators I~ from Eq. (6) 
into Eq. (4) and equating the coefficient of I1 to 
zero, we get the equation for the determination 
of a ( t) 

dajdt = iy(H1 + H0a + 1ML1a2), a (t1) = 0. (8) 

Hereafter we shall everywhere set t1 = 0. 
We now have only to disentagle Io by means 

of a transformation of the type (7), and S ( t, 0 ) 
is then reduced to the form (2), where a ( t) is 
determined from Eq. (8) and the determination 
of b ( t) and c ( t ) reduces to quadratures: 

I 

b (t) = iy ~ [H 0 (t') + H_1 (t') a (t')] dt'. 
0 

I 

c (t) = iy ~ H _1 (t') eb(l'> dt'. 
0 

(9) 

An essential point is that a, b, c depend on the 
gyrolllagnetic ratio y, but do not depend on the 
value of the spin j. Therefore the solution is ob­
tained all at once for particles of arbitrary spin 
with the same value of y. 

Let us consider an example: a constant field, 
and perpendicular to it a uniformly rotating alter­
nating field 

(10) 

Such a magnetic field is used in experiments on 
the measurement of the magnetic moments of 
atomic nuclei, and in this connection was first 
considered by Rabi. 3 Equation (8) takes the form: 

. da sin 6 ( ·). . 
- l - =-- e-• ~ - 1/ e•l..~a2) -a cos a 

d1: Vz 2 ' 

where 

't = wot, wo = -y V H~ + H~, tan6 = H1/H 0 , f..= wjw0 • 

Solving the equation with the boundary condition 
a ( 0 ) = 0, we find 

a {'t) = 2 (e-iJ.~- e-''"~)j(n1e'<J.-'">~- n2), 

eb<~> = (n1- n2)2e-i'"T/(n1e'<J.-'")T- n2)2, 
c ('t) = 2 (eW-!J.)T- 1)/(n1ei(A-!J.)T _ n2), (ll) 

fl.= cos a+ n1 sin e;V2," 
where ni> n2 are the roots of the equation 

x2 + 2 V2x (cos a- t..)/sin a- 2 = o. 
Suppose the particle has spin ! and that at the 

initial time the z component of the spin is ! . By 
means of Eq. (2) we find that the probability of re­
versal of the spin during the time t is given by 

P (t) = 1/ 2 / c (t) e-b(l)f2J2 
11•+-112 

_ q2 sin2 6 . 2 (wt 2 ) 
- 1 + q" - 2q cos 6 sm 2 V 1 + q - 2q cos a , 

q = W 0jw = 1/f.., 

which agrees with the result of Rabi. 3 

(12) 

Let us consider another representation of the 
S matrix, which is more convenient for particles 
with larger spin j; we try to represent S ( t, 0 ) 
in the form 

S (t, 0) = exp (irxfx) exp (i~fu) exp (iylz), (13) 

where 01, {3, y are real functions of t (the 
reality follows from the unitary character of the 
S matrix; for the representation (2) a, b, c do 
not have to be real). Carrying out calculations 
analogous to those performed above, we find that 
the disentangling of Ix, iy, iz is possible and 
01, {3, y are determined by a system of equations 
of the type of Eq. (8), but more complicated. An 
important fact is that these equations involve only 
the gyromagnetic ratio y, and not the spin j it­
self. Consequently, a, {3, and y do not depend 
on j and can be expressed uniquely in terms of 
the a, b, c determined from Eqs. (8) and (9). 
But each factor in Eq. (13) is the operator for a 
finite rotation around one of the coordinate axes, 
and therefore 

s (t, 0) = Dw {<p, -11-; ljl), (14) 

and furthermore the Eulerian angles cp, J., If! 
that define the resultant rotation are uniquely re­
lated to a, b, c and do not depend on j. To 
express cp, J., 1/J in terms of a, b c it suffices 
to examine the S matrix for a particle with spin ! 
situated in the same magnetic field. From Eq. (2) 
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we find the form of the S matrix in the system of 
functions I !m>, m = ±!: 

s<'i.)(t, 0) = (eb/2- (a~/2) e~b/2 (c/V2) e-b/2) = D('/,) (rp, &,1)1), 
- (af112) e-b,2 e-b/2 

(15) 
from which we have 

s1n .-- = ! - e- , e2"~' = e2'W - -,-----
. S 'ac b)''• . a ., c 

2 \ 2 c (eb- acj2) ' - a (eb- acj2) 

(16) 

For the example (10) discussed above we have 

. s q sin e . ("'t -v 1 2 2 ") sm 2 = sm 2 + q - q cos u • 
J! 1 + q2 - 2q cos e 

(17) 

The probability of a transition during the time 
t from the state I jm > into the state I jm'>, 
for a particle with spin j, is given by 

Pm+m' (i) = j D~{!n' (rp, %, 1)1) /2 

=[(j+m)! (j-m)! (j+m')!(j-m')!] cos4i(.f) (18) 

[ I S \,Z"-m+m' l" 
'1;1 tan 2 1 

X .L.i (-1)" ' J J 
, v! (v- m + m')! (j + m- v)! (j- m'- v)! 

If we take here j = ! , m = ! , m' = - ! and sub­
stitute the value (17), we get the result (12). 

In the general case the polarization state of a 
particle is characterized by a density matrix p. 
Expanding it in terms of the tensor operators 

TIM• we find the way the polarization changes 
with time: 

p= 

If the particle has not only a magnetic dipole 
moment but also higher multipole moments, a 
complete disentangling of the S matrix cannot 
be carried through. This is due to the fact that 
for I > 1 the commutatbr [ TIM• TIM' L of 
two tensor operators of the same rank I cannot 
be expressed in terms of tensor operators of this 
same rank. It is always possible however, to 
separate out from the S matrix the part corre­
sponding to the magnetic-dipole part of the Hamil­
tonian, - y (HI). A meaning can be given to this 
if it is permissible to regard the .rest of the Ham­
iltonian as a perturbation. 

I am sincerely grateful to I. S. Shapiro for his 
interest in this work and a number of valuable 
suggestions. 
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