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A method of disentangling given by Feynman is used to solve the problem of the way the
polarization of a particle possessing a magnetic moment changes in an external magnetic

field.

IN the present paper we treat the problem of the
change of the polarization of a particle possessing
a magnetic moment under the action of an external
magnetic field of arbitrary time dependence. The
solution is obtained by means of a method given by
Feynman! for disentangling operator expressions
containing noncommutating operators. This method
has hitherto not been widely applied. It has been
used to solve only one problem — that of the har-
monic oscillator subjected to the action of an arbi-
trary external force (cf. reference 1, Sec. 5, and
reference 4). Therefore it is of interest to solve
other quantum-mechanical problems by the Feyn-
man method, in order to elucidate the properties
of this method and the difficulties that arise in
applying it to concrete problems. One such prob-
lem, which can be solved completely by the Feyn-
man method, is considered below. The results
themselves are not new, and are for the most

part contained in a paper by Majorana,? where
they were obtained by a different method.

Let us consider a particle with magnetic mo-
ment M = yhl. Here vy is the gyromagnetic ratio
and I is the spin angular momentum of the par-
ticle. The transformation of the wave function
P (t) from the time t to the infinitesimally dif-
ferent time t + At is accomplished by means of
the unitary operator

S(t, t+ Af) =1+ iyH(#) 1 At = exp (iyH () 1 Af),

where H(t) is the external magnetic field. From
this we get for a finite time interval:

‘I’(tz) = S(tz» tl)q’(tl)r
, (1)

N 3
§(ta, 1) = lim T[ exp (¢ H (£ 1 At,) = exp [iyx H() 1 dt] ,
—00 i=1 i
where in this formula t is an ordering parameter
and indicates the order of action of the infinitesi-
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mal operators 1 + iyH (t)IAt. Because of the fact
that the components of the vector I do not com-
mute with the exponent in Eq. (1) we cannot pro-
ceed with the usual rules familiar in analysis.

We shall try to represent S(t;, t{) ina
“disentangled” form:

S (¢2, t;) = exp (a?l) exp (bl,) exp (cf-),
1:‘[‘,1:($ jx_i;y)/l/-é-i f0=1Aza (2)
where a, b, ¢ are for the present unknown func-
tions of the time.

By means of Eq. (2) one can easily find the
probability amplitude of a transition from the state
|jm> at the time t; to the state |jm’> at the
time t,, since on using for the right-hand ex-
ponent the series expansion

. o ot
exp (c/—;) = Z ,:—! It
k=0
we see that when it acts on ¥jy only a finite num-
ber of terms of this series remain. Similarly,
zp}"m: exp (al;) reduces to a finite sum, and conse-
quently the transitionamplitude <jm’|S(ty, t;)|jm>
also contains only a finite number of terms.

To disentangle the operators ii, iy, i_1 we use
the following artifice: we break up H;l; into a sum
of two terms:

Hl = xIy 4+ (Hy —x) Iy + Holo + H_41 4,
H:l-.l = (+Hx+ iHy)/V2v Hy=H,
and apply to the first term the theorem on the dis-

entangling of an exponential factor proved by Feyn-

man (cf. reference 1, Sec. 3):
t;

S (tar ty) = exp [iyjl S x(t) dt']

ty

(3

ty
x exp liv | 1(Hy —0) [y + Holy + Hoal 1t} (4)

ty
ty t,

I, () = exp [-— i, g x(t) dt’] I, exp [iyil S x(t) dt’] .

t, t,
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We set
ty

a(t) = iYg x () dt’ )
i

and determine a(t) in such a way.that the oper-
ator I; in Eq. (4) may be completely disentangled.
To do this we first find the explicit form of the
operators Ih (t). Let I (a)= el I“e—ali ;
differentiating with respect to @, we obtain the
system of equations

dl, (@)/de = 0, dl,(@)/da = — I (),
dl_ (a)/de = — I (a)
with the initial conditions I,(0) = il-“ The solu-
tion of these equations is
L) = 1p, Iy(@) = To—aly, I_; ()
= [y —aly + %1, (6)
In an analogous way we get
eth] e=le = [ g%, e*lo]_je—drv = ] _e—=, (7

Now substituting the operators I from Eg. (6)
into Eq. (4) and equating the coefficient of I, to
zero, we get the equation for the determination

of a(t)

dajdt = iy(H, + Hoa + YoH_1a%), a(t;)=0.  (8)

Hereafter we shall everywhere set t; = 0.

We now have only to disentagle I, by means
of a transformation of the type (7), and S(t, 0)
is then reduced to the form (2), where a(t) is
determined from Eq. (8) and the determination
of b(t) and c(t) reduces to quadratures:

t
b() = ix\[Ho () + Hoy (1) a ()] dt .

R (9)
c(t) =iy S H_y (t')eb® dt".
0

An essential point is that a, b, ¢ depend on the
gyromagnetic ratio 7y, but do not depend on the
value of the spin j. Therefore the solution is ob-
tained all at once for particles of arbitrary spin
with the same value of 7.

Let us consider an example: a constant field,
and perpendicular to it a uniformly rotating alter-
nating field

H,=H, H,=H coswt, H, = H;sinwt. (10)

Such a magnetic field is used in experiments on
the measurement of the magnetic moments of
atomic nuclei, and in this connection was first
considered by Rabi.? Equation (8) takes the form:

.da _ sin®

— &=V (e~** —1/,e*7q?) — q cos b,

where
T=apt, 0o = —y |}/ HE + HE, tanb = Hy/H,, \ = ofe.

Solving the equation with the boundary condition
a(0) =0, we find
a(z) = 2 (e~ — e~u7)[(n,ei*—W7 — ny),
) = (1, — et (et — my)?,
¢ (x) = 2 (e!0—w)T — 1)/(n,e/* w7 — ny),
w = cos b + n; sin /12,

where ny, n, are the roots of the equation

(11)

%2 42V 2x (cos b — \)/sin b — 2 = 0.
Suppose the particle has spin % and that at the
initial time the z component of the spin is 3. By
means of Eq. (2) we find that the probability of re-

versal of the spin during the time t is given by

P (t) =1y|c(t)e—tthiz|2
P l) =afe(t) e w2

q?sin%0

(el
_—_msm?(%]/l + g* — 2q cos 6),

q = /e = 1/)\:

which agrees with the result of Rabi.3

Let us consider another representation of the
S matrix, which is more convenient for particles
with larger spin j; we try to represent S(t, 0)
in the form

S (¢, 0) = exp (ialy) exp (iB[,) exp (iyl2), (13)

where a, B, v are real functions of t (the
reality follows from the unitary character of the
S matrix; for the representation (2) a, b, ¢ do
not have to be real). Carrying out calculations
analogous to those performed above, we find that
the disentangling of T, Ty, i, is possible and
a, B, v are determined by a system of equations
of the type of Eq. (8), but more complicated. An
important fact is that these equations involve only
the gyromagnetic ratio y, and not the spin j it-
self. Consequently, @, B, and y do not depend
on j and can be expressed uniquely in terms of
the a, b, ¢ determined from Egs. (8) and (9).
But each factor in Eq. (13) is the operator for a
finite rotation around one of the coordinate axes,
and therefore

S(t, 0) =D (¢, 95 §), (14)

and furthermore the Eulerian angles ¢, ¢, ¢

that define the resultant rotation are uniquely re-
lated to a, b, ¢ and do not depend on j. To
express ¢, 4, ¥ interms of a, b c¢ it suffices
to examine the S matrix for a particle with spin 3
situated in the same magnetic field. From Eq. (2)
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we find the form of the S matrix in the system of
functions |im>, m==+3:

S(‘h)(t’ 0) _ (ebIZ_ (aC/Q) e—bl2 (C/Vg) 8—b12> — D(‘lz) ((Pv 3,4)),

— (@)Y 2)etiz b2
(@/V2) 15)
from which we have
.9 ‘ac s . a : c
Sin o =|(—-e ), e = ——— W=~
2 \2 > ¢ c (e — ac/2) a(ef — ac/2)
(16)

For the example (10) discussed above we have

. sin 0
Sin - g

wt
=————sin{ - 2 -2 6).
2 V14 g2 —2qcos St (2V1+q qcos)

17
The probability of a transition during the time

t from the state |jm> into the state |jm’>,
for a particle with spin j, is given by

Posr (8) = [ DS (9, 9, ) 12

=[G+ m)t (= m)! G+ m)(—m) costl () (A8)
. (tan 3\i2\'—m+m' ]2
X Z(—i)"
1

2
vv—m4m)(G+m—v)!(j—m —v)! J ’
If we take here j=3, m=3%, m’=—3 and sub-
stitute the value (17), we get the result (12).
In the general case the polarization state of a
particle is characterized by a density matrix p.
Expanding it in terms of the tensor operators

689

Tipm, Wwe find the way the polarization changes
with time:

p= Z orm Trm; prm(t) = EPIM' (0) DS (o, 9, O).
o<I<2j M
(19)

If the particle has not only a magnetic dipole
moment but also higher multipole moments, a
complete disentangling of the S matrix cannot
be carried through. This is due to the fact that
for I>1 the commutator [Typ, Trwr]- of
two tensor operators of the same rank I cannot
be expressed in terms of tensor operators of this
same rank. It is always possible however, to
separate out from the S matrix the part corre-
sponding to the magnetic-dipole part of the Hamil-
tonian, —vy (HI). A meaning can be given to this
if it is permissible to regard the rest of the Ham-
iltonian as a perturbation.

I am sincerely grateful to I. S. Shapiro for his
interest in this work and a number of valuable
suggestions.
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