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SoLOMON1 has found the equations of motion de­
scribing the magnetization of a system consisting 
of two types of interacting magnetic moments in 
parallel.fields. Kurbatov and the author2 have in-• vestigated the thermodynamic properties of a two-
spin system, including the spin-spin and spin-lat­
tice relaxations. The present note gives a simple 
thermodynamic derivation of the equations describ­
ing the behavior of such a system in a constant 
field H0 arbitrarily oriented with respect to an 
alternating field h. 

We shall start with the equations 

kl.1> = Ln (H,- H~l)> + L}~ (H, -Jf~2>), 

M/.2> = L~~ (H;- H}1>) + LJ~ (Ht- H~2>), 
(1) 

where H(1) and H(2) are related to the magneti­
zations M(1) and M(2) of the spin subsystems by 

M<r> =X H<Il M<2l =X H<2> (2) 
01 , 02 • 

The Lik satisfy the Onsager relations.. Assuming 
that in the absence of a field the medium is iso­
tropic, we write 

L ll Xol • + H . L12 Xo2 • 
ill.=-;; 0 11< YrXoisii<Z o• ill. = -;r o;k .• 

(3) 

L21= Xot ou,; L2~ = JC.'!!. 0;/1. + Y2Xo2Stii.ZHo, 
'C 't'2 

where y1 and y2 are the gyromagnetic ratios for 
the spin subsystems, Eikl is the unit antisymmet­
ric tensor, and H = H0 + h ( t ). Equations (1) now 
become* 

M1 + M1 I 't1 + M2 I 't = (Xol I 't1 + Xod 't) H + Y1 ( Mt x H l • • 
M2 + Md 't2 + M1 I 't = (xod 't+ Xo2 I 't2) H + Y2 (~ x H ]. 

In the absence of a transverse rf field in the 
steady state, as may have been expected, these 
equations lead to the relations given by (2). 

For parallel fields, i.e., if [H0 x h(t)] = 0, 

(4) 

Eqs. (4) are the same as those obtained by Solomon. 
If the second subsystem is·missing, they become 

M+ Ml't= (xol't)H +y[MxH]. 

Let us now require that M(1) and M(2) are of . 
equal magnitudes; then multiplying Eqs. (4) by 

(5) 

Eliminating Xot and· x02 from (4) and (5), we 
obtain 

M2 =y2 (M2 xH]- ~: (M2 x[~xH]]-(M~~2)[~x[M1 xH]], 
2 (~ 

where 

'-n = MU 't (M1• H); '-12 = (M1• M2) I 't (M1· H); 
(7) 

'-21 = (Ml· M2) It (M2· H); ),22 = M~ I 't(M2 H). 

If A.t2 = A.2t = 0 (that is in the limit as T - oo), 
Eqs. (6) go over into the Landau-Lifshitz equations 
for two noninteracting spin systems. They can be 
used to describe relaxation processes and reso­
nance phenomena in antiferromagnets. 

*Henceforth we shall write the indices denoting the sub­
systems as subscripts. 
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ONE of the authors has given1 the explicit form 
of the Clebsch-Gordan coefficients for the expan­
sion of the finite-dimensional representations of 
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the Lorentz group. If one choose the basis func­
tions of the finite-dimensional representation to be 

( " ) sinh 1oc d1+1coshNoc y (" ) 
'"Nim IXv(jl = lm 'll'Cfl , 
'f YN 2 (N2 - 12) ••• (N2 -12 ) d cosh1+loc 

t = pcosh IX, r = p sinh IX, 0 ~IX<;; oo, 

-oo<;;p~oo, N=0,1,2, ... , (1) 

the expansion has the form 

tJ!.v,r,m,tJ!,y,z,,, = ~ V ~~':;·A (N!l1N2l2Nl) ct;:,,z,m,tJ!Nlm• 
N,l (2) 

A (NlllN2l2Nl)- N V(2ll + 1) (2/2 + 1) X (hhll, M2l2, jjl); 

2h + 1 = Ni, and X are the Fano functions.2 It was 
mentioned that if one replaces N by in, where 
n is real and 0 :::::; n :::::; oo, Eq. (1) gives the basis 
functions of one of the irreducible unitary infinite­
dimensional representations of the Lorentz group: 

IX .& = sinh1" d1+1 cos noc 
tJinlm(' ,cp) Vn2(n2 +1) ... (n2 +12 ) dcosh1ticx Yzm(~3~). 

The functions 1/Jnzm are orthogonal and are nor­
malized by the condition 

00 

~ Sinh2 IXdiX ~ dQtj!~,,l,m, (IX, %,qJ) tJ!n,l2 m 2 (IX,%, Cfl) 
0 (4) 

Let us find the Clebsch-Gordan expansion for the 
1/!nzm· We shall look for an expansion of the form 

00 

,,, ,,, ""\ d ·z-z,-z.v·· 14 czm 
'fnll1ml'fn2l2m2 == L.J ~ nz llllfl2 nn l1mll2m2 

l 0 

X B (n1n2n, l1l2l) A (n1l1 n,l2nl) tJinlm· (5) 

A ( n1Z1n2Z2nZ) is expressed in terms of ji> j2 and 
j exactly as in the case of Eq. (2), except that in­
stead of using integer or half-integer values of h, 
h and j, we must take 

h= 1/2(in1-1), j2="1/ 2(in2 -1) and. j= 1/2(in-1). 

The recursion relations for the 1/JnZm enable 
us to obtain equations relating the B ( n1n2n, Z1Z2Z) 
for different values of Zt> Z2 and Z. These equa­
tions are satisfied if B ( n1n2n, Z1Z2Z) = B ( n1n2n) 
does not depend on Z1, Z2 and l : 

B (n1n2n) =sinh r.n 1 sinh1tn2 sinh T:n [cosh ; (n1 + n2 + n) 

Ti:( ) 7t ) X cosh2 n1 - n2 - n cosh 2 (n1 + n2- n (6) 

X cosh -I'-(n1 - n2 + n)J-1 • 

Using the fact that 

~A (n1l1n2l2nl) A (n1l1n2l2n' l) = o (n- n'), 
(7) 

we get the inverse Clebsch-Gordan series: 

(8) 

For complex n, formula (3) gives the basis func­
tions of an infinite-dimensional irreducible non­
unitary representation. Such functions occur in 
the expansion of the product of (1) and (3) in a 
Clebsch-Gordan series: 

tJ!nz,m,~Nl,m, = ] i1·-l v nN I 47tV A (nll1Nl2vl) cl;::,,t,m,tJ!vtm. 
~ (~ 

v=n1 -be; x=-N+1, -N+2, ... ,N-I; 

h = 2j + 1, N = 2j2 + 1. 

Using Eqs. (22) and (29) of reference 1 and Eq. (9), 
one can obtain the expansion of derivatives of the 
1/!nzm in terms of irreducible representations: 

aa~Gn(p)tJ!ntm = ~il-L V(2f + 1)n/2vc:!:g,_~ I 

v,f,L (1 O) 

CLA A( l f r a in-x] X zmt~ n ,2 ,vL)L-ap-x-P- Gn(p)tJ!vLA• 

iv=in+K, K=±1, Gn(P) dependsonlyon p, 

&±1; 2,±1; 2 = ajat 'f o/oz, a±1; 2, 'ft/2 = ± (a/ax 'f iO/oy ). 
All the formulas given here ;:tpply to the case 

where p2 = t 2 - r 2 > 0, i.e., when all the basis 
functions are timelike. To go over to the case of 
r = p cosh a, t = p sinh a, - oo :::s a :::::; oo, 0 :::::; p :::::; oc, 

one should make the substitution a _.....a - i7l/2 
in all the formulas. 
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