LETTERS TO THE EDITOR

EQUATIONS OF MOTION FOR A SYSTEM CONSISTING OF TWO TYPES OF INTER-ACTING SPINS

G. V. SKROTSKII

Ural' Polytechnic Institute

Submitted to JETP editor May 26, 1958

J. Exptl. Theoret. Phys. (U.S.S.R.) 35, 793-794 (September, 1958)

 $SOLOMON^1$ has found the equations of motion describing the magnetization of a system consisting of two types of interacting magnetic moments in parallel fields. Kurbatov and the author² have investigated the thermodynamic properties of a two-spin system, including the spin-spin and spin-lattice relaxations. The present note gives a simple thermodynamic derivation of the equations describing the behavior of such a system in a constant field H_0 arbitrarily oriented with respect to an alternating field h.

We shall start with the equations

...

• (-)

$$\dot{M}_{k}^{(1)} = L_{ik}^{11} (H_{i} - H_{i}^{(1)}) + L_{ik}^{12} (H_{i} - H_{i}^{(2)}),
\dot{M}_{k}^{(2)} = L_{ik}^{21} (H_{i} - H_{i}^{(1)}) + L_{ik}^{22} (H_{i} - H_{i}^{(2)}),$$
(1)

where $H^{(1)}$ and $H^{(2)}$ are related to the magnetizations $M^{(1)}$ and $M^{(2)}$ of the spin subsystems by

4...

$$M^{(1)} = \chi_{01} H^{(1)}, \quad M^{(2)} = \chi_{02} H^{(2)}.$$
 (2)

The L_{ik} satisfy the Onsager relations. Assuming that in the absence of a field the medium is isotropic, we write

$$L_{ik}^{11} = \frac{\chi_{01}}{\tau_1} \delta_{ik} + \gamma_1 \chi_{01} \varepsilon_{ikl} H_0; \quad L_{ik}^{12} = \frac{\chi_{02}}{\tau} \delta_{ik},$$

$$L_{ik}^{21} = \frac{\chi_{01}}{\tau} \delta_{ik}; \quad L_{ik}^{22} = \frac{\chi_{02}}{\tau_2} \delta_{ik} + \gamma_2 \chi_{02} \varepsilon_{ikl} H_0,$$
(3)

where γ_1 and γ_2 are the gyromagnetic ratios for the spin subsystems, ϵ_{ikl} is the unit antisymmetric tensor, and $H = H_0 + h(t)$. Equations (1) now become*

$$\dot{M}_{1} + M_{1}/\tau_{1} + M_{2}/\tau = (\chi_{01}/\tau_{1} + \chi_{02}/\tau) H + \gamma_{1} [M_{1} \times H],$$

$$\dot{M}_{2} + M_{2}/\tau_{2} + M_{1}/\tau = (\chi_{01}/\tau + \chi_{02}/\tau_{2}) H + \gamma_{2} [M_{2} \times H].$$
(4)

In the absence of a transverse rf field in the steady state, as may have been expected, these equations lead to the relations given by (2).

For parallel fields, i.e., if $[H_0 \times h(t)] = 0$, Eqs. (4) are the same as those obtained by Solomon. If the second subsystem is missing, they become

$$\dot{\mathbf{M}} + \mathbf{M} / \tau = (\chi_0 / \tau) \mathbf{H} + \gamma [\mathbf{M} \times \mathbf{H}].$$

Let us now require that $M^{(1)}$ and $M^{(2)}$ are of equal magnitudes; then multiplying Eqs. (4) by

$M^{(1)}$ and $M^{(2)}$, respectively, we obtain

$$\frac{\mathbf{M}_{1}^{2}}{\tau_{1}} + \frac{(\mathbf{M}_{1} \cdot \mathbf{M}_{2})}{\tau} = \left(\frac{\chi_{01}}{\tau_{1}} + \frac{\chi_{02}}{\tau}\right) (\mathbf{M}_{1} \cdot \mathbf{H}),$$

$$\frac{\mathbf{M}_{2}^{2}}{\tau_{2}} + \frac{(\mathbf{M}_{1} \cdot \mathbf{M}_{2})}{\tau} = \left(\frac{\chi_{01}}{\tau} + \frac{\chi_{02}}{\tau_{2}}\right) (\mathbf{M}_{2} \cdot \mathbf{H}).$$
(5)

Eliminating χ_{01} and χ_{02} from (4) and (5), we obtain

$$\dot{\mathbf{M}}_{1} = \gamma_{1} [\mathbf{M}_{1} \times \mathbf{H}] - \frac{\lambda_{11}}{M_{1}^{2}} [\mathbf{M}_{1} \times [\mathbf{M}_{1} \times \mathbf{H}]] - \frac{\lambda_{12}}{(\mathbf{M}_{1} \cdot \mathbf{M}_{2})} [\mathbf{M}_{1} \times [\mathbf{M}_{2} \times \mathbf{H}]],$$

$$\dot{\mathbf{M}}_{2} = \gamma_{2} [\mathbf{M}_{2} \times \mathbf{H}] - \frac{\lambda_{22}}{M_{2}^{2}} [\mathbf{M}_{2} \times [\mathbf{M}_{2} \times \mathbf{H}]] - \frac{\lambda_{21}}{(\mathbf{M}_{1} \cdot \mathbf{M}_{2})} [\mathbf{M}_{2} \times [\mathbf{M}_{1} \times \mathbf{H}]],$$
(6)

where

$$\lambda_{11} = M_1^2 / \tau (\mathbf{M}_1 \cdot \mathbf{H}); \quad \lambda_{12} = (\mathbf{M}_1 \cdot \mathbf{M}_2) / \tau (\mathbf{M}_1 \cdot \mathbf{H});$$

$$\lambda_{21} = (\mathbf{M}_1 \cdot \mathbf{M}_2) / \tau (\mathbf{M}_2 \cdot \mathbf{H}); \quad \lambda_{22} = M_2^2 / \tau (\mathbf{M}_2 \cdot \mathbf{H}).$$
(7)

If $\lambda_{12} = \lambda_{21} = 0$ (that is in the limit as $\tau \to \infty$), Eqs. (6) go over into the Landau-Lifshitz equations for two noninteracting spin systems. They can be used to describe relaxation processes and resonance phenomena in antiferromagnets.

*Henceforth we shall write the indices denoting the subsystems as subscripts.

¹I. Solomon, Phys. Rev. **99**, 559 (1955).

²G. V. Skrotskii and L. V. Kurbatov, Izv. Akad. Nauk SSSR, Ser. Fiz. **21**, 833 (1957) [Columbia Techn. Transl. 21, 833 (1957)].

³G. V. Skrotskii and V. T. Shmatov, Изв. высших учебн. завед., физика (Bulletin of the Higher Inst. of Study, Physics) 2, 138 (1958).

Translated by E. J. Saletan 159

CLEBSCH-GORDAN EXPANSION FOR INFINITE-DIMENSIONAL REPRESENTA-TIONS OF THE LORENTZ GROUP

A. Z. DOLGINOV and I. N. TOPTYGIN

Leningrad Physics and Engineering Institute, Academy of Sciences, U.S.S.R.

Submitted to JETP editor May 29, 1958

J. Exptl. Theoret. Phys. (U.S.S.R.) 35, 794-796 (September, 1958)

ONE of the authors has given¹ the explicit form of the Clebsch-Gordan coefficients for the expansion of the finite-dimensional representations of the Lorentz group. If one choose the basis functions of the finite-dimensional representation to be

$$\psi_{Nlm}(\alpha\vartheta\phi) = \frac{\sinh^{l}\alpha}{V N^{2} (N^{2} - 1^{2}) \dots (N^{2} - l^{2})} \frac{d^{l+1}\cosh N\alpha}{d\cosh^{l+1}\alpha} Y_{lm}(\vartheta\phi),$$
$$t = \rho\cosh\alpha, \ r = \rho\sinh\alpha, \ 0 \leqslant \alpha \leqslant \infty,$$
$$-\infty \leqslant \rho \leqslant \infty, \ N = 0, 1, 2, \dots,$$
(1)

the expansion has the form

ω

$$\psi_{N_{1}l_{1}m_{1}}\psi_{N_{2}l_{2}m_{2}} = \sum_{N,l} \sqrt{\frac{N_{1}N_{2}}{4\pi N}} A \left(N_{1}l_{1}N_{2}l_{2}Nl\right) C_{l_{1}m_{1}l_{2}m_{2}}^{lm}\psi_{Nlm},$$
(2)
$$A \left(N_{1}l_{1}N_{2}l_{2}Nl\right) \equiv N \sqrt{(2l_{1}+1)(2l_{2}+1)} X \left(j_{1}j_{1}l_{1}, j_{2}j_{2}l_{2}, jjl\right);$$

 $2j_i + 1 = N_i$, and X are the Fano functions.² It was mentioned that if one replaces N by in, where n is real and $0 \le n \le \infty$, Eq. (1) gives the basis functions of one of the irreducible unitary infinitedimensional representations of the Lorentz group:

$$\psi_{nlm}(\alpha,\vartheta,\varphi) = \frac{\sinh^{l}\alpha}{V n^{2} (n^{2}+1) \dots (n^{2}+l^{2})} \frac{d^{l+1} \cos n\alpha}{d \cosh^{l+1}\alpha} Y_{lm}(\vartheta,\varphi).$$
(3)

The functions ψ_{nlm} are orthogonal and are normalized by the condition

$$\int_{0}^{\infty} \sinh^{2} \alpha d\alpha \int d\Omega \psi_{n_{1}l_{1}m_{1}}^{\bullet}(\alpha, \vartheta, \varphi) \psi_{n_{2}l_{2}m_{2}}(\alpha, \vartheta, \varphi)$$

$$= \frac{\pi}{2} \delta(n_{1} - n_{2}) \delta_{l_{1}l_{2}} \delta_{m_{1}m_{2}}.$$
(4)

Let us find the Clebsch-Gordan expansion for the ψ_{nIm} . We shall look for an expansion of the form

$$\begin{split} \Psi_{n_1 l_1 m_1} \Psi_{n_2 l_2 m_2} &= \sum_{l} \int_{0}^{\infty} dn i^{l-l_1-l_2} \sqrt{i n_1 n_2 / 4\pi n} \, C_{l_1 m_1 l_2 m_2}^{lm} \\ &\times B \left(n_1 n_2 n, \ l_1 l_2 l \right) A \left(n_1 l_1 n_2 l_2 n l \right) \Psi_{nlm}. \end{split}$$
(5)

A $(n_1l_1n_2l_2nl)$ is expressed in terms of j_1 , j_2 and j exactly as in the case of Eq. (2), except that instead of using integer or half-integer values of j_1 , j_2 and j, we must take

$$j_1 = \frac{1}{2}(in_1 - 1), \ j_2 = \frac{1}{2}(in_2 - 1) \text{ and } j = \frac{1}{2}(in - 1).$$

The recursion relations for the ψ_{nlm} enable us to obtain equations relating the $B(n_1n_2n, l_1l_2l)$ for different values of l_1 , l_2 and l. These equations are satisfied if $B(n_1n_2n, l_1l_2l) \equiv B(n_1n_2n)$ does not depend on l_1 , l_2 and l:

$$B(n_{1}n_{2}n) = \sinh \pi n_{1} \sinh \pi n_{2} \sinh \pi n \left[\cosh \frac{\pi}{2} (n_{1} + n_{2} + n) \times \cosh \frac{\pi}{2} (n_{1} - n_{2} - n) \cosh \frac{\pi}{2} (n_{1} + n_{2} - n) + \cosh \frac{\pi}{2} (n_{1} - n_{2} + n) \right]^{-1}.$$
(6)

Using the fact that

$$\sum_{l_1 l_2} A(n_1 l_1 n_2 l_2 n l) A(n_1 l_1 n_2 l_2 n' l) = \delta(n - n'),$$

$$A(n_1 0 n_2 0 n 0) = \sqrt{n / i n_1 n_2},$$
(7)

we get the inverse Clebsch-Gordan series:

$$\psi_{nlm} = \sqrt{4\pi n / in_1 n_2} [B(n_1 n_2 n)]^{-1} \sum_{l_1 l_2 m_1 m_2} i^{l_1 + l_2 - l} \times A(n_1 l_1 n_2 l_2 n l) C_{l_1 m_1 l_2 m_2}^{lm} \psi_{n_1 l_1 m_1} \psi_{n_2 l_2 m_2}.$$
(8)

For complex n, formula (3) gives the basis functions of an infinite-dimensional irreducible nonunitary representation. Such functions occur in the expansion of the product of (1) and (3) in a Clebsch-Gordan series:

$$\begin{split} \psi_{nl_{1}m_{1}}\psi_{Nl_{2}m_{2}} &= \sum_{l,\nu} i^{l_{1}-l} \sqrt{N/4\pi\nu} A \left(n_{1}l_{1}Nl_{2}\nu l\right) C_{l_{1}m_{1}l_{2}m_{2}}^{lm} \psi_{\nu lm}, \end{split}$$
(9)
$$\nu &= n_{1} - i\varkappa; \ \varkappa = -N+1, \ -N+2, \dots, N-1; \\i\nu &= 2j+1, \ N = 2j_{2}+1. \end{split}$$

Using Eqs. (22) and (29) of reference 1 and Eq. (9), one can obtain the expansion of derivatives of the ψ_{nlm} in terms of irreducible representations:

$$\partial_{\alpha\beta}G_{n}(\rho)\psi_{nlm} = \sum_{\nu,f,L} i^{l-L} V \overline{(2f+1)n/2\nu} C_{l|_{\alpha}\beta f-\varphi}^{1|_{\alpha}\alpha},$$

$$(10)$$

$$\times C_{lmf\varphi}^{L}A(nl, 2f, \nu L) \Big[\frac{\partial}{\partial \rho} - \varkappa \frac{in-\varkappa}{\rho}\Big] G_{n}(\rho)\psi_{\nu L\Lambda},$$

$$\begin{split} &i\nu = \mathrm{in} + \kappa, \ \kappa = \pm 1, \ \mathrm{G}_{n}\left(\rho\right) \ \mathrm{depends} \ \mathrm{only} \ \mathrm{on} \ \rho, \\ &\partial_{\pm 1/2, \, \pm 1/2} = \partial/\partial t \mp \, \partial/\partial z, \ \partial_{\pm 1/2, \, \mp 1/2} = \pm \left(\partial/\partial x \mp \, \mathrm{i}\partial/\partial y\right). \end{split}$$

All the formulas given here apply to the case where $\rho^2 = t^2 - r^2 > 0$, i.e., when all the basis functions are timelike. To go over to the case of $r = \rho \cosh \alpha$, $t = \rho \sinh \alpha$, $-\infty \le \alpha \le \infty$, $0 \le \rho \le \infty$, one should make the substitution $\alpha \rightarrow \alpha - i\pi/2$ in all the formulas.

¹A. Z. Dolginov, J. Exptl. Theoret. Phys. (U.S.S.R.) 30, 746 (1956), Soviet Phys. JETP 3, 589 (1956).

² M. Matsunobu and H. Takębe, Progr. Theor. Phys. 14, 589 (1955).

Translated by M. Hamermesh 160