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Equations (4) and (5) together give the most gen­
eral selection rules in the form of a relation be­
tween the statistical tensors. 

Let us now consider some simple examples. 
If the initial state of the a+ b- c + d reaction 
is unpolarized, then p =PI· Then according to 
(4) and (5) p' = PI• or 

p' (qc, 'tc, q d' 'td; &c) 

= {- l)qc+Tc+qd+Tdp' (qc,- "c• qd' - 'td; &c)• 
(6) 

In our case the p' tensors do not depend on cp c . 
Equations (6) are the same selection rules as Simon 
and Welton obtained for q = 1 and the same as 
those obtained by Shirokov. * 

Let us now consider a cascade of the form 
a + b - c + d followed by c + e - f + g ( the 
incident beam a, the target b, and e are un­
polarized). According to (6), p = PI in the initial 
state of the second reaction, and we obtain 

p' (qi, "t· qg, 'tg; &,, - cpf) 

= (-l)qf+Tt+qg+Tgp'(q,,- "f' qg' -'t~; &f, cpf). (7) 

For the special case in which qr. = qg = 0, Eq. (7) 
becomes 

(8) 

Since <{Jf is the azimuth angle of nf in the coordi­
nate system in which the y c axis is directed along 
na x nc, Eq. (8) states the well known fact that the 
angular distribution is symmetric about the pr~duc­
tion plane of the incident particle in the second re­
action of the cascade. Equations (7) may be re­
garded as a generalization of this assertion. 

In conclusion, we remark that our selection 
rules can also be obtained by Shirokov's method, 
but the present approach is simpler. 

The author expresses his gratitude to Profes­
sors M.A. Markov, M. I. Shirokov, and L. G. Zasta­
venko for interest and discussion of the results. 

*We remark that the first and second selection rules given 
by Shirokov are actually two different ways of stating the same 
rule. 
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MINAMI1 has given a transformation of the scat­
tering matrix which leaves the differential cross 
section invariant for the case in which the colliding 
particles have spins 0 and i. The present note 
gives an analog of this transformation for all spins 
s 1 and s2 of the colliding particles. 

We express the scattering matrix in terms of 
the functions 81 s2 Y ~a a ( n) describing the state 
of a system of two particles whose total angular 
momentum is j. The component of j and the 
components of the spins of the two particles along 
the direction given by n are M, a 1, and a2, 

respectively. :En terms of these functions, the 
scattering matrix is2 •3 

M (nt, n) = ~ Y!~. (nr) [Y~:x.,(n;)]* A~,a,a''a''• 
a.jM 

X (salO IS[J'a) .. /21 + 1 y/M(n) V Zj + 1 s,s, sl 

Let S ( n) be a rotation that carries the vector n 
into the third axis, and consider the functions 
cp a1 a2 ( n) whose components are 

[cpa,a2 {n)]a,a, = D~~a, {S-1 (n)) D~',a, (S-1 {n)), 

where nin1m 2 ( S) are the matrix elements of an 
irreducible representation of the three-dimensional 
rotation group.4 These functions describe a state 
in which the first and second particles have spins 
whose components are a1 and a2, respectively, 
along n. 

The functions Yh~a2 (n) satisfy the relation 

Y~~. (n) = cpa,a, (n) V2i ~ 1 D~.+a,,M (S (n)), 

so that the matrix element for the transition from 
the state <Pa1a2 (ni) to the state <Pa1a2 (nf) is* 

(oc1oc2 j M foc' oc2') = ~ A1 • • 
1 ~ (f1cx1cx ex 

I ' ' 

(1) 
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Since yjM ( -n) = (- )s1+s2-jyjM (n) the 
a1 a2 -a1-a2 ' 

condition that the matrix element be invariant 
under reflection requires that 

It is easily seen that the coefficients 

where each of the "A's are either + 1 or -1, and 
satisfy the same unitary and symmetry conditions 

• 5 
as do the Ah1 a2a1 a2 . 

If, in addition, "A_a1-a2 = kA.a1a 2, . where k = ± 1 

(if s1 and s2 are integers, k = -1 must be ex­
cluded, since the combinations of a's include one 
in which a 1 = a 2 = 0), the A' coefficients can be 
used to construct the scattering matrix. It is seen 
from (1) that this matrix, although different from 
M, gives the same scattering cross section. It is 
easily shown that M' ( nrni ) = A ( nf) M ( llflli ) A* ( ni ) , 
where A ( n) is diagonal and has matrix elements 
"Aa1 a 2 in the coordinate system whose third axis 
lies along n. Let us consider double scattering 
given by 

p12 (nr2n;2) = M (nr2n;2) p,2 (nl2) M• (nr2nl2). 

The M matrix is given on the center-of-mass 
coordinate system, so that the density· matrix 
Pi2 ( ni2) of the initial state before the second scat­
tering must also be given in this system, since it 
is obtained from the density matrix of the particle 
after the first scattering by the transformation 
Pi2 ( ni2 ) = Spf1 ( nf1 ) S*. Here S is some rotation 
in the plane of the first scattering, 6 and ni2 and 
and nf1 are vectors related in the usual way. Now 
consider the density matrices p' obtained from 
the scattering matrix by 

M' =A (nr) M (n,n,) A• (n;), 
' M' ' M'• ' S ' s· P2r = P2; • P2t = P11 • 

p~1 (nfl) = A (nr1) p11 (nt1) A• (nfl)· 

The cross section for double scattering is then 
given by 

cr2 ~ Sp (MSp1,s· M•); cr~ ~ Sp (MS'p,1S'• M•), 

where S' = A* ( ni2 ) SA ( nf1 ) . 
If the spins of the particles involved are no 

greater than f, the transformations of Eq. (2) 
contain one for which S' Pfi S' * = pf1 . 7 If at least 
one of the particles has spin greater than i, how­
ever, there is no such transformation among those 
given by (2). Thus for processes involving particles 
of spin greater than i, there is in general no arbi­
trariness such as that given by (2). An obvious ex-

ception is scattering by an infinitely heavy target, 
when ni2 = nf1 and S = 1; in this case there is no 
multiplicity of scattering which can be used to dif­
ferentiate between the set of phases given by (2). 

In conclusion, I express my. gratitude to Profes­
sor M. A. Markov, Professor Ia. A. Smorodinskii, 
R. M. Ryndin, M. I. Shirokov, and Chou Kuang-Chao 
for discussion of the work and valuable comments. 

*We note that the cross section and tensor moments are 
easily expressed in terms of the parameters Aia, a, a;, a2 and 

generalized spherical functions4 without the use of Racah coef­
ficients. 
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UsACHEV,1 Watt,2 Fraser,3 and Gurevich and 
Mukhin4 have studied the theoretical interpretation 
of fission neutron spectra. These authors used a 
model in which the neutrons are assumed to be 
evaporated from the moving fission fragments. 
In the center-of-mass system the spectrum of 
neutrons evaporated from a fragment whose ex­
citation energy is E0 is of the form 


