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THE wave-front velocity in Maxwell-Lorentz elec-
trodynamics and in nonlinear electrodynamics has
been the subject of several studies.® Some of the
references cited used the method of Levi-Civita,
which is the simplest and clearest. We propose to
use this method to analyze electrodynamics with
higher derivatives. We shall restrict our consider-
ations to fourth-order differential equations for the
potential.
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First we use the Lagrangian formalism to obtain
the general form of the equations of electrodynamics
with higher derivatives. Since the correspondence
principle must always remain fulfilled, let us as-
sume that the Lagrangian density L depends on
the two invariants I; = HjHjc/2 and I, =
Hjk,7Hjk,7, where, as usual,

Hiyp = Api— A (1)

This last expression gives us the first group of
equations, namely*

Hit 4+ Here + Hyw = 0. (2)
The second group is obtained from the variationally
derived Euler-Lagrange equations
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Writing out Eq. (3) using the relations
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etc., we obtain the general form of the second
group of equations, namely
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The wave front is a surface of weak discontinuity.

In the present case all the Hjx and all but their
very highest derivatives are continuous on the wave
front, that is, all but the Hjj jmy. According to
the method we are using, we must find the differ-
ences which occur in Egs. (2) and (4) when passing
through the wave front. Writing hji jypn for the
nonvanishing differences of the Hjj ympn, Egs. (2)
and (4) give

hik,l.mm + hhl,imm + hli. kmm — O,

Bhin, w1t + S Hin i Hon, pPomn, prt = 0. (5)

Let us consider a plane front. Let E = Ex(z,t)
and H =Hy(z, t), which means that Hj(x3, %)
and Hj3(x3, X4) do not vanish. Writing the rela-
tions

Hipim (X3 + Axg, x4 + Ax,)
= Hip,im (X3, X0) -+ Hin, tmaAx3 -+ Hip,tmg DXy

for points in front of and behind the wave front and
taking the differences, we find that the discontinui-

C = 0°LJol2,
G = 0°L/31%31, K = 0°L/oL,01%,

D = °L /01,015,
M = 20°L/0I%).

ties in the second derivatives give

Riv,tms = VAR, 1ms
v = lim ({Ax3/Ax,) as Ax,— 0.

(6)

It can be shown, using (2), (5), and (6), that the
index 4 in Eq. (5) can be replaced by 3 if the addi-
tional factor iv is added (for instance, hyy 444 =
V4h13’333). Then diVldlng by h13’333 and ertlng' the
result in three-dimensional vector form, Eq. (5)
gives

(1 4 20E% ) vt — daEy tEy o0® —2 (1 ++ 20E, 1H, .

— 4aE3 ) v — 8afl,, H y 0 + 1 + 20H? , = 0, (7

where o =@&/B.

Thus in electrodynamics with higher derivatives,
as in nonlinear electrodynamics, a wave front has
in general four velocities of propagation different
from the velocity of light in vacuo.

A special caseis =0 (or a=0), i.e.,

L =1f(I;) +bl,/2 (the electrodynamics of Bopp
and Podolsky is of this kind). It is easily seen
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that in this case (7) yields v =1, which is the
velocity of light in vacuo.

The author expresses his gratitude to Profes-
sor D. Ivanenko for discussing the work.

*Here Ay is the four-vector whose components are A, Ay,

A, and i, and Ay ; = 0A,/0x;; we set c =1

1A Sommerfeld, Ann. Physik 44, 177 (1914);
L. Brillouin, Ann. Physik 44, 203 (1914).

2 M. S. Svirskii, Bectaux MILY (Bulletin Moscow

State Univ.) 8, 43 (1951); D. 1. Blokhintsev, Dokl.
Akad. Nauk SSSR 82, 553 (1952); D. I. Blokhintsev
and V. V. Orlov, J. Exptl. Theoret. Phys. (U.S.S.R.)
26, 513 (1953); V. I. Skobelkin, J. Exptl. Theoret.
Phys. (U.S.S.R.) 27, 689 (1954); L. G. Iakovlev,

J. Exptl. Theoret. Phys. (U.S.S.R.) 28, 246 (1955),
Soviet Phys. JETP 1, 181 (1955).

Translated by E. J. Saletan
153

SELECTION RULES IN REACTIONS IN-
VOLVING POLARIZED PARTICLES

CHOU KUANG-CHAO
Joint Institute for Nuclear Research
Submitted to JETP editor April 23, 1958

J. Exptl. Theoret. Phys. (U.S.S.R.) 36, 783-785
(September, 1958)

SIMON and Welton! and Shirokov? have obtained
the selection rules for a reaction of the type
a+b—c +d in the form of relations between
the polarization vectors and tensors. They as-
sume that the initial state is not polarized. The
present communication gives a derivation of the
selection rules for any arbitrarily-polarized
initial state. We shall use Shirokov’s notation®
and assume that all the particles have nonvanish-
ing rest mass.

Consider the statistical tensors of the final
state inthe a +b —c¢ +d reaction,

0" (G, %o Qg =i 8,87, (1)

which depend essentially on the parameters of the
rotation gegz! which carries the z,, ya, Xq co-
ordinate system into the z;, ys, Xg coordinate
system. The first of these systems is associated
with the initial state, the z, axis being parallel
to ny, and the y, axis being perpendicular to
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the production plane of particle a. The second of
these systems has z, parallel to ng, and y,
in the direction of the cross product ng X ng.
Here n; is the unit vector along the direction
of motion of particle i, and q is the rank of
the statistical tensors. The spin indices T are
defined in terms of these particular coordinate
systems. With this choice of coordinate
systems, the Euler angles for the rotation
gcga! are {-m, 6c, T—¢c}, where 6 and
@c are the spherical angles of the unit vector
ne inthe zy3, yg, X5 coordinate system (see
Shirokov?).

Let the state obtained from the initial one by
space reflection be characterized by the statisti-
cal tensor py. Under the reflection the z, and
zZo axes, chosen along the momenta of particles
a and c, change direction, while the y,; and
Ve axes remain invariant. The spherical angles
6c1 and @gp of the reflected —ng vector in the
reflected {z,, ys, X4} coordinate system are

'351 = ¢, Q= — ¢, (2)

The spin operators remain invariant under reflec-
tion. If 6, and ¢ are replaced by 6o1 and @gf
in Eq. (1), we obtain the p[ statistical tensors
from p’; the spin indices T of the new p] ten-
sors must be quantized with respect to the old
nonreflected zg, ye, X¢ system. Since the re-
flected {zg, yg, Xo}p coordinate system differs
from the initial one only by rotation through an
angle m about the y, axis, the transformation
properties of the statistical tensors? lead to the
equations

6 @ % Gy a5 Bes —9) = 2 DL (0,7, 0) D° -

T

(0, =, 0)
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Here the spin indices T are quantized with re-
spect to their own proper coordinate systems.
Since DI.(0, 1, 0) = (-1)4*T5 -+ (see Shiro-
kov? and Gel’fand and Shapiro?), Eq (3) leads to

070G, %o Ggo a5 Ve — @)

=(— l)llc+1c+<7d+‘rdpr (qc, — T Gy — 9., (Pc)‘ (4)

The law of parity conservation may be stated in
the following way: if the initial statistical tensors
p are replaced by the reflected tensors pj, the
tensors p” of the products of the reaction are
the tensors p[ which are obtained from p’ by
Eq. (4). In other words, if the statistical tensors
p' are written p’ = F(p), then

¢, = F (g, (5)



