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The motion of a perfectly conducting gas in a magnetic field is investigated. The Riemann 
invariants for a number of gases are computed and some nonstationary problems are solved. 
A new method is proposed for obtaining an approximate general solution of the magnetohydro
dynamic equations. Some types of motion involving shock waves are considered. 

THE qualitative picture of unidimensional motion 
in magnetohydrodynamics is fairly clear. It ap
pears to be useful to develop methods for solving 
unidimensional problems in order to be able to 
evaluate quantitatively those new features that the 
introduction of a field adds to the dynamics of a 
conducting gas. 

We shall restrict ourselves to the case of in
finite conductivity, since only in this case, and 
even then not always, can we obtain solutions in 
analytic form. Moreover, this case is of interest 
as a limiting case in the sense that here the influ
ence of the field is particularly pronounced. The 
effect of finite conductivity can be estimated quali
tatively by treating classical gas dynamics as an
other limiting case. 

1. NONSTATIONARY MOTION 

The principal results in this field were obtained 
by Kaplan and Staniukovich, 1 who found the charac
teristics and a particular solution of the magneto
hydrodynamic equations. However, their formulas 
are in a form that cannot yet be applied to the solu
tion of specific problems. 

For the case of isentropic motion the magneto
hydrodynamic equations can be written as 

~ + v ~ + ~ ap•_ = o· at ax p ax ' (1.1) 

ap• ap• 2 av at+ v ax+ pcm ax= 0. (1.2) 

Here p* = p + h212, h fu = H is the intensity of 
the magnetic field such that H 1 v; cfu = c2 + V~, 
where c2 = ( oplop )s is the speed of ordinary 
sound, while V2 = H2147Tp is the Alfven velocity. 
Equation (1.2) can be obtained from the equation 
of continuity if we take into account that 

where z = x or t. 
After dividing (1.2) by pcm, adding and•sub

tracting (1.1), we can write the result in the form 

[iJjiJt + (v +em) iJjiJx] J ± = 0, 

where we have denoted 

The quantities J± are conserved along the char
acteristics dxl dt = v ::1: em and go over into the 
classic Riemann invariants as h - 0. The inte
gral in (1.3) may be conveniently written in the 
form 

(1.4) 

Here y = cplcv, Tl =Viole~; y = clc0 ; the sub
script 0 refers to quantities defined for v = 0. 
The integral (1.4) is a Chebyshev differential bi
nomial and can be evaluated as a whole only in 
the cases y = ( 4n + 1 )I ( 2n + 1 ) and 'Y = 2 - %n• 
where n = 1, 2, 3 ... In the first case when 
n = 1 we have the practically important case y = 
% . All other values of n can be used only for 
approximations. This does not include the case 
of isothermal motion2 of interest for certain ap
plications which is given by y = 1. In this case 
we must start with (1.3). We state the results of 
integration for certain values of y which are of 
practical interest: 

y=l, J±=v+ 2(c}+b2p)'"+b2 ln ~ ,1 ; [ 
(c2 + b2p)'l,- b J 

_ (c'T+b 2 p)'+b 

3 
y=2· J± (1.5) 

=v +2co [y (I + YJY2 )'/, + '1/-'/, In (y + (Y2 + l/YJ)'1']; 

y = ~, J ± =V + (2c0/"rJ) (1 + YJY)'''· 

Here CT is the isothermal speed of sound, while 
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b = h/p = const. 
We shall deal henceforth only with a monatomic 

gas. We obtain the constant J± from the condition 
that y = 1 when v = 0. Then 

v = + (2cof"tl) [(1 + "fJY)'I'- (1 + 'YJ)'I•J, (1.6) 

from which it follows that 

c =CoY = (c0/'YJ){[( 1 + ''1)'1• + 'YJV/2c0]'!,- 1}. (1. 7) 

By using the Poisson adiabatic we can determine 
the dependence on v and on the other parameters 
of the gas. Formulas (1.6) and (1.7) may be used 
for the description of self-similar motion and for 
unidimensional running waves given by the special 
solution1 x=(v±cm)t+f(v) whichcannowbe 
written in the following form convenient for prac
tical purposes: 

x = t {fv +~ [o + 'IJ)'I'- ((I+ ''1)'1·+ ;~:?J} + f (v). 

(1.8) 

By using this formula we can solve, for example, 
the problem of a piston entering with a speed 
U =at into a tube which contains a perfectly con
ducting gas in a magnetic field ( a = const ) . 

This solution is completely analogous to the 
case h = 0, although it js more awkward. The 
shock wave is formed at the instant 

t = _5t_ 6 (1 + Yi)'l, 
a -'-;8'+'-;-----'Yi'--- ' (1.9) 

which in the case YJ = 0 reduces to the well known 
result3a. for y = %: t = 3c0 / 4a. As the field in
creases, the shock wave is formed at progressively 
later times and progressively further away from 
the piston, since the field decreases the compres
sibility of the medium, the perturbations are prop
agated with greater speed, and it is more difficult 
for a compression wave to develop in this case 
than in a medium in the absence of the field and 
for the same piston speed. One can arrive at the 
same conclusion by investigating graphically the 
system of characteristics for this problem. 

The condition c > 0 enables us to determine 
from (1. 7) the maximum rate of nonstationary 
efflux of monatomic gas into a vacuum where 
there is also no field: 

V ~ 2c0 [(1 + 'YJ)'I• -1] /'YJ. (1.10) 

From the Bernoulli equation of magnetohydro
dynamics we can obtain the rate of stationary 
efflux: 

• v = [2 (io + b2po)J'I. = V2 Co Cr ~ 1 + 'YJY · (1.11) 

Both rates given by (1.10) and (1.11) increase 

as the field increases. The limit of their ratio 
approaches .f2 as YJ - oo, and is equal to ..f3 
for YJ = 0 in the case y = % . 

The magnetohydrodynamic equations for isen
tropic flows can be reduced in the usual way3b to 
a single second order linear equation with variable 
coefficients, and in doing so we must take t and 
x as the dependent variables, while v and p or 
c should be taken as the independent variables. 
However, the equation which is obtained as a result 
of this does not have an analytic solution for any 
value of y. In order to obtain an approximate gen
eral solution we can approximate the equation of 
state as follows 1 

p = Ap(2n+a)l(2n+I) + B _ lj2 b2p2, 

where A, n, B are arbitrary constants. How
ever, such an approximation is not convenient in 
the case when the magnetic pressure is greater 
than the thermodynamic pressure. We shall give 
the equation of state in a different form which is 
convenient in the majority of cases for obtaining 
the general solution: 

p" = ApY + 1/2 b2r2 =(A+ lf2b2ri-y) pY = CpY, (1.12) 

where p1 is the constant value of the density de
fined in a suitable manner. In the case y = 
( 2n + 3 )/( 2n + 1 ), where n is an integer, we can 
obtain the exact solution of the corresponding 
Darboux equation. If we interpret p* as the or
dinary pressure, then all the equations in terms 
of whatever variables are employed, and all the 
thermodynamic relations will be of exactly the 
same form as in ordinary gas dynamics, only the 
velocity of sound will be greater in the present 
case. Therefore all the results of Landau and 
Lifshitz3b and of Staniukovich4 may be carried 
over to this case without any changes. 

2. MOTION INVOLVING SHOCK WAVES 

We shall consider in detail a number of prob
lems where the presence of a shock discontinuity 
plays an essential role. The front of the discon
tinuity is parallel to the magnetic field and is per
pendicular to the velocity of the flow. The relations 
between the parameters of different types of dis
continuity have been investigated in detail by Heifer5 

and by Lust.6 We shall discuss a number of topics 
ab initio, having in mind the solution of certain 
problems . 

In the system of coordinates associated with 
the surface of discontinuity the following condi
tions must be fulfilled: 
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PlU~ + Pl + hi/2 = P2U~ + P2 + h~/2; 

i 1 + u~/2 + hi/p1 = i2 + u~/2 + h~/p2; 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

The subscripts 1 and 2 refer to the two sides of 
the surface of discontinuity. 

The taking into account of finite conductivity 
alters only the last relation7 by smearing out the 
front of the discontinuity. However, formulas (2.1) 
to (2 .4) will hold at large distances from the front. 
Therefore, the formulas which we obtain below 
should also hold in the case of finite conductivity. 

By introducing the specific volume V = 1/ p and 
the energy per unit volume of the field E = H2 /87r 
we can obtain the equation of the shock adiabatic: 

it- i2 +-} (Vl + V2) (P2 + 82- P1- s1) 
(2.5) 

+ 2 (s1V1 - z2V2 ) = 0. 

We now introduce p2 /p 1 = x = V1/V2 representing 
the discontinuity in the density of the medium. As 
a result of the field being frozen-in E2 = E1x2. After 
taking into account the fact that i = yp V / ( 'Y - 1) we 
shall obtain from (2.5) after a number of transfor
mations: 

rt.X- I - (rt.- x) P2/P1 + "1/1 (x- 1)3 = 0, 

rt. = (y +I) I (y-1), "1/t = 81/Pl = Hi/8o.pl. 
(2.6) 

In the case 77 1 = 0 we obtain the usual Hugoniot 
adiabatic. The parameter 771 differs by the factor 
y/2 from the parameter 77 of the preceding sec
tion. 

We note that although Eq. (2.6) is cubic in x, it 
is linear in p2 /pl> and 771• Therefore, by fixing 
one of the parameters we can easily calculate the 
dependence of the other parameter on x. Figure 1 
shows the Hugoniot adiabatics in the presence of 
the field in the case 'Y = % in the system of coor
dinates PdP1 and V2/V1 = 1/x. They lie progres
sively higher than the usual adiabatic as the initial 

PziP, 
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\'' ... 

1,0 Vz/V, 

FIG. 1. Curve 1- TJ, = 0; 
2-TJ, = 1; 3-TJ, = 10; 4-

2 3 TJ, = 10 ; 5 -TJ, = 10 . 

field H1 increases, i.e., the compressibility of the 
medium decreases. The adiabatics in the presence 
of the field are fourth order curves with two asym
ptotes: 

V2/V1 = 1 /rt. = (y-1)/(:+ 1), 

Pd Pl = - (1 + 'It) I rt.. (2.7) 

A rarefaction shock wave cannot exist also in 
the case of magnetohydrodynamics in consequence 
of the principle of increase of entropy at a discon
tinuity of the type under investigation, 8 therefore 
states represented by points of the adiabatics be
low the point ( 1, 1) are not realized. 

Due to the occurrence of "freezing-in" in order 
to specify completely the state of the medium be
yond the discontinuity we must know in addition to 
the initial parameters only any one of the three 
quantities p2, P2• h2. 

The discontinuity in the temperature is deter
mined by the equation of state, from which it fol
lows that T2 /T1 = p2 /xp1• Since 1/x increases 
with 771 for a given value of the ratio p2 /pl> the 
temperature discontinuity must also increase. 
Although in actual fact the problem cannot be 
stated so simply, nevertheless we must not forget 
the possibility of such an increase in temperature, 
since it could occur in the case of some nonsta
tionary introduction of a field into a medium which 
already contains a discontinuity and when p2 /P1 
remains constant or decreases insignificantly. 

In order to obtain an evaluation as to which 
wave is more advantageous from the point of 
view of obtaining a higher temperature - the wave 
in a medium with a field, or without a field - we 
shall solve the problem of the piston moving with 
a constant velocity U into an unbounded tube. A 
shock wave is formed in the gas which at the initial 
moment coincides with the position of the piston 
and then moves away from it. In the region be
tween the wave and the piston the gas moves with 
velocity U. From (2.1) and (2.2) we can obtain 
the following formula: 

(2.8) 

Since the gas is at rest ahead of the discontinuity 
we obtain from (2.8): 

U = [(p~- p~) (V1 - V2)J'''· (2.9) 

This equation can be conveniently rewritten in the 
form 

{1 ( 1)[P" 2 JL''' V=c1 Y 1-x p,-1 +"f/1 (x-I) I .•(2.10) 

We can easily calculate the speed of the discon
tinuity front by expressing it in terms of the density 
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FIG. 2.-Curve 1-T2/T,; 2-x = p2 /p,; 3-p2/p; 4-v/c,. 

discontinuity: 

_!'__={~'I) [(0(- 3)x2 + 4x- (0( + 1)] + (0( + 1) (x-1)}'/, (2.11) 
Ct y X -1 . 

With the aid of (2.10), (2.11), and (2.8) we can find 
for any specific value of Ulc, the discontinuities 
in the pressure, the temperature, the density, and 
the value of vI c1. Figure 2 shows the variation 
with 111 of these parameters in the case y = % 
and Ulc1 = 1. As the field increases all the dis
continuities tend to 0, while vI c1 increases, 
however the value of vlcm1 = vlc1 ( 1 +1!) 112 ap
proaches 1, i.e., the shock wave degenerates into 
a weak discontinuity. This result is physically 
clear: as the field increases the compressibility 
of the medium decreases, while progressively 
larger masses of gas are involved in the motion 
and progressively larger fractions of the work 
done must be expended in increasing the energy 
of the field. Therefore the discontinuities in p, 
p, T must decrease and tend to 0 as 171 - oo. 

In a medium in which p « H 2l81r with all the 
other conditions remaining the same, the shock 
wave has a low efficiency from the point of view 
of heating the gas. This should be taken into 
account in many astr~physical problems. 

Let us consider the reflection of a shock wave 
from an absolutely rigid wall. Since the gas is at 
rest in the space between the wall and the shock 
wave, the relative velocities of the gas on the two 
sides of the discontinuity are the same for the in
cident and for the reflected wave. Therefore, by 
making use of (2. 8), we obtain 

(p;- p;') (Vl- V2) = (p;- p;) W2- Va), 

where the subscript 3 denotes the region between 
the wall and the shock wave. This condition may 
be brought into the form: 

r P2 2 J (xl -1) [ /h-1 + 'FJ1 (x1 -1)_ 
(2 .12) 

=~ (1-~') ['2_-1 -f-'fJI xi_(x2-1)lj 
P1 X2 _ Pz P2IPt 2 

Here x1 = p2 I p1 ; x2 = p3 I p2 • The equations of the 
adiabatics for the incident and the reflected shock 
waves are given by: 

0 2 4 s 8 10 12 14 18 18 2tl7;, 

O(X,- 1- (0(- x1) p2 / p1 + "h (x1 -- 1 )3 = 0; (2.6') 

O(X2- 1 - (0(- X2) Pa/ P2 + 'f)1Xi (p,j P2) (X2- 1 )3 = 0.(2 .6") 

Here, just as in the case of the problem of the pis
ton, we have not succeeded in finding an analytic 
solution, but the numerical solution of equations 
(2.12), (2.6'), and (2.6") does not present any dif
ficulties. 

The results of the calculation are given in 
Fig. 3. For the sake of simplicity we have taken 
the, wave of the preceding problem as the incident 
wave. 

The use of the above results to investigage the 
decay of an arbitrary discontinuity in the medium 
considered by us, containing a field perpendicular 
to the velocity, also presents no difficulties in 
principle. Such an investigation can be carried 
out in exactly the same way as in the case of or
dinary gas dynamics, ac and we can obtain the same 
qualitative results with somewhat altered estimates 
for the velocities. 

In conclusion, I express my deep gratitude to 
K. P. Staniukovich for a discussion of the above 
results. 
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