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A scattering theory is considered in which the virtual "clouds" around the particles are always 
taken into account exactly. The theory is based on the representation of the basis functionals 
as products of single-particle functionals. In the absence of vacuum polarization the equations 
for the matrix elements are automatically renormalized, and the matrix elements can be ex­
pressed in terms of the single-nucleon matrix elements. 

IN scattering problems in quantum theory it is nucleon states. The method described below (in 
usually assumed that for t = ±co the particles do Sec. 2) for calculating such quantities is a gener-
not interact with the vacuum. The adiabatic intro- alization of the method we have proposed3 earlier 
duction of the interaction then includes both the for the case of two bound nucleons. 
interaction between the particles (by way of the The scattering scheme so developed takes 
field) and also the interaction with the vacuum. proper-energy effects into account automatically; 
Since the particles always interact with the vac- on the other hand it seems to be impossible to ex-
uum, it is interesting to consider the question of tend the scheme to the vacuum polarization with-
a scattering theory in which the interaction of the out the explicit introduction of renormalization. 
particles with the vacuum is at all times taken This is a consequence of the assumption of the 
into account exactly (the scattering of "dressed" spatial localizability of the virtual field (only a 
particles). This is also one of the possible ap- "cloud" around the particles), which is the essen-
proaches to a problem that has recently been much tial basis of the choice of the <I>. Therefore for 
discussed, that of the construction of the S matrix practical calculations the method can be used for 
on the basis of ideas about the physical particles, the treatment of the interaction of nucleons, me-
without the introduction of the concept of "bare" sons, and hyperons in the region of relatively low 
particles. 1 energies. 

As the first aspect of the problem of the scat-
tering of "dressed" particles we can take the prob­
lem of constructing basis functionals <I> which 
asymptotically describe noninteracting dressed 
particles. In the present paper we consider from 
this point of view some problems of the scattering 
of dressed particles in the case in which the func­
tionals <I> are represented in the form of products 
of single-particle functionals, which are solutions 
of the Schrodinger equation with interaction. Such 
functions have been discussed by Ekstein2 and have 
been used by the present writer for the derivation 
of a two-nucleon potential depending on the phase 
shifts of the 1r-N scattering. 

As soon as the system of basis functions <I> has 
been constructed, the apparatus of the formal scat­
tering theory2 at once leads to a system of nonlinear 
integral equations for the scattering amplitudes. 
A characteristic feature of this method is the pres­
ence in these equations of the matrix elements of 
the field operators between products of single-
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1. THE BASIS FUNCTIONS 

Let us consider the case in which there is no 
vacuum polarization, and go over to the configura­
tion space for the nucleons. The total Hamiltonian 
for n nucleons and antinucleons interacting with 
the meson field can be written in the form 

n 

H = Hr:+ ~[HN(i) + U;), (1) 
i 

where H7T is the Hamiltonian of the free meson 
field, HN ( i) refers to the i-th "bare" nucleon, 
and ui is the operator for the interaction of the 
i-th nucleon with the meson field, which we shall 
assume is linear in the meson creation operators 
a+ and annihilation operators a: 

(2) 
q 

Here q denotes all the quantum numbers of a me­
son. Let us consider the construction of the wave 
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functions q, ( 1, 2, ... n; a) of a system of n non­
interacting dressed nucleons. Since the nucleons 
have meson clouds, q, depends on the meson field 
variables a, or 

<D(l, 2 ... n; a)= <D(l, 2 ... n; a+) A0 , 

where A0 is the vacuum state vector. ( Here the 
physical meson vacuum A.0 is the same as the 
mathematical state.) Strictly speaking, because 
of the identity of the mesons belonging to the me­
son clouds of different nucleons, one cannot define 
a state of noninteracting nucleons for arbitrary 
distances between them. Only for large distances 
Rij between the nucleons does the effect of the 
identical nature of the mesons become negligible, 
so that the state of the noninteracting dressed 
nucleons can be defined only in the asymptotic 
sense for Rij - oo. 

It is easy to see that we cannot separate off from 
the Hamiltonian (1) any part corresponding to non­
interacting dressed nucleons. Therefore q, ( 1, 2, 
. . • ; a) must be a solution of the Schrodinger 
equation with the total Hamiltonian H for large 
relative distances, 

where E ( i) is the energy of the i-th free nu­
cleon. Moreover, asymptotically q, must also 
be an eigenfunction of the total momentum. The 
wave function q, is constructed from products of 
single-nucleon state vectors Fa ( 1, a) (a denotes 
all the quantum numbers of a nucleon), which are 
eigenvectors of the energy and momentum operators: 

(4) 

H;Fa.(i, a)= {HN (i) +H."+ Vi} Fa.(i, a)= Ea.(i) Fa.(i, a), 

{PN + u} Fa. (i, a)= p~Fa. (i, a), (5) 
where u is the momentum of the meson field 
and PN is the momentum operator of a nucleon. 
Furthermore, Fa ( i, a) is an eigenfunction of the 
total spin operator. The wave function of the sys­
tem of noninteracting dressed nucleons is then 

<Pa(1,2 ... ; a+)A0 = S C~~ .. Fa(l,a+)F~(2,a+) .. . Ao, 
aB.. (6) 

where the coefficients C~/3 ... are such that asym­
ptotically 4>a has the required symmetry proper­
ties. 

Such a method for constructing q, has much in 
common with the construction of functions in the 
theory of molecules. The role of the electrons, in 
whose coordinates one has to antisymmetrize, is 
now played by the mesons, in whose coordinates q, 

is symmetric. The antisymmetrization with re­
spect to the electrons belonging to the various 
nuclei destroys the orthogonality of the basis func­
tions. Here, in just the same way, because of the 
identity of the mesons in all the one-nucleon states 
F a• the functions 4>a and <i>b are not orthogonal, 
and so on. 

Let us verify that the conditions (3) are satisfied. 
We introduce the notation 

(7) 

where u(+) contains the absorption operators and 
u(-) the emission operators. Since the operator 

h = H71" + :0 u\+) is linear in the absorption opera­

tors, the quantity [h, F(i, a+)} does not depend 
on the operators a and commutes with any other 
F(j, a+). Using the equations (4), we have 

{ H ·- ~ E ( i) } F (I , a+) F (2, a+) ... A0 

i (8) 
· = 2: F (I, a+) F (2, a+) ... [U)+>, F (j, a+)] Ao . 

i ~· j 

According to Eq. (5), 

F (j, a+) Ao = exp {i (Pi- u)-ri} F 0 (j, a+) A0 , (9) 

where F0 does not depend on the coordinates. 
Therefore it follows from Eq. (4) that 

u)+> F ct (j, a+) A0 

= - L: ~ exp {ip,.ri + iq•(r;- ri)} 

X 

q n 

V;q F(n) (j) (F(n) (i), Vft Fa (j, QJ) 
E 11 +c,:,q-Ea. 

(10) 

where F(n)( j) is the eigenstate of the Hamiltonian 
Hj with the momentum Pn = Pa - q, and the energy 
E = ( M2 + p2 ) 1/2 M > M · and w = ( 1 + q2 ) 1/2 n n n • n N• q · 
The denominator in Eq. (10) cannot vanish. For 
I ri - rj I - oo the quantity (10) decreases exponen­
tially. In a similar way one can verify that the 
function q, is asymptotically an eigenfunction of 
the total momentum or angular momentum. 

The basis functions q, A for states in which 
there are real mesons besides the nucleons are 
obtained from the expression (6) by multiplying 
by a suitable number of meson creation operators: 

<I> A= a~;at, ... <I> a; A= (q,, q2 ... ; a). (11) 

To describe a meson spatially remote from the 
other particles one must take a wave packet, i.e., 
multiply 4>a not by a~, but by 

f (r) = S c,,e-iq·rat. 

Then asymptotically q, A will be a solution of the 
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Schrodinger equation. In fact, multiplying 
{ H - ~ E ( i) - wq} aii_<Pa on the left by ~ e-iqr cq, 
we get on the right, in addition to terms of the type 
shown in Eq. (8), also terms that contain factors 

~ u<+l f ( ~ ~ iq(r;-r)v ~[,., r)]=~~e ;qCq, 
i q 

that vanish for I r - ri I - oo in virtue of the prop­
erties of the coefficients Cq of the wave packet. 
Because of the asymptotic character of the condi­
tions imposed on <P, there still remains some 
arbitrariness in the expression for <P. The ex­
pression (6) can be multiplied by a function of the 
relative distances Rij that goes to unity for 
Rij - oo, This arbitrariness is of no importance 
when we deal with scattering by the methods of 
quantum field theory, and becomes important when 
we go over to the phenomenological treatment 
(see Sec. 3). 

2. THE EQUATIONS FOR THE TRANSITION 
AMPLITUDES 

In the case of scattering of "dressed" particles 
we cannot define2 the scattering matrix S in 
terms of an operator acting on the asymptotic 
states of the "dressed" particles. In this case 
the S matrix is defined by the relation 

SsA = ('P'k-l, 'P'~+l) = oBA- 2rrio (Es- EA) R~"il, (12) 

where 'lJ(±) are the eigenfunctions of the Hamil­
tonian H with the respective boundary conditions: 

'P'~±) =<f>A- H-L~ie[(H-EA)<f>A]. (13) 

According to the formal scattering theory2 the 
scattering amplitudes 

R~A) = RsA = cr~-). (H- EA) <t> A) (14) 

satisfy a system of nonlinear integral equations. 
These equations have the form: 

RaA=(<f>s,(H-EA)<t>A)-~ R~BRnA 
~ En-Es--ie 

(15) 
_ '\--, (Xd• (H-ER) <ll s)* (X'' (H- Ea) <lla) 

7 Ed-EB 

where the Xd refer to the bound states, and the 
first sum is taken over all states n of the con­
tinuous spectrum of H. In the case of a single 
nucleon Eq. (15) is nothing other than the Low 
equation. For a larger number of nucleons the 
formalism with the equations (15) departs from 
the usual formalism of the S matrix; this can 
be seen in particular from the fact that matrix 
elements with the wave functions <P in the form 

of products of single-nucleon functions are not 
encountered in the usual theory of the S matrix. 

Let us examine the inhomogeneous terms in 
the equations (15). According to Eq. (11) 

Rh = (<I:> B. (H- EA) <t> A) 

= (<t>b, a ' a , ... (H- EA) at,at, . .. <Pa)-
qi q2 

(16) 

In Eq. (16) let us displace all the creation operators 
to the left to <Pb and all the annihilation operators 
to the right to <Pa, and write R~A in the form 

R~A = (<t>b, L (a, a+) <I:> a), (17) 

where the operator L contains only normal prod­
ucts of the creation and annihilation operators. 
Here the wave functions <Pb and <Pa, which de­
scribe noninteracting dressed nucleons (Eq. (6)) 
depend on the meson variables only in a small 
volume around a nucleon (the "meson cloud"). 
Therefore in calculating the expression (17) we 
may use the method of introducing individual co­
ordinates for the mesons in the cloud of each 
nucleon.3 We introduce ajq and ajq, the crea­
tion and annihilation operators for a meson in the 
cloud of the j -th nucleon, 

[aiq, a;\;]'= 6,.i oqk; [aiq• a;k] = 0. (18) 

The state vector of a single nucleon is then written 
as F(i, ai)A 0, and the state vector for n free nu­
cleons (with neglect of the identical nature of the 
mesons in the clouds of different nucleons) has the 
form 

<1>~=~ C~~-.F"(l,ai)F~(2,at) ... A 0 • 

"~··· 
(19) 

The vectors <P 0 are orthogonal. Asymptotically 
<Pa coincides with <P~. Our problem is to reduce 
the matrix element (17) between the states <Pb and· 
<Pa (i.e., with account taken of the identical nature 
of the mesons in the clouds of different nucleons) 
to matrix elements between states <P~ and <P ~ 
(i.e., with only mesons belonging to the same nu­
cleon treated as identical particles ) . This problem 
is solved in general form by Eq. (A.l) of the Ap­
pendix. We have 

where : PT: denotes the normal product of the 
operators P and T, and A+ and A are sums 
of creation and annihilation operators: 

Aq = ~ a;q; At= ,L ait. 
(21) 

The weight operator N has the form 

I+ N =: exp ~ ~a?:;a1q:. (22) 
. i+ J q 
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In Eq. (20) each of the meson operators occurring 
in : L ( 1 + N) : acts only on the state vector of a 
single nucleon. Therefore the matrix element (20) 
is expressed in terms of products of one-nucleon 
matrix elements of normal products of meson op­
erators a, a+ and vertex operators V: 

(F a• at ... ah . . Vs . . F ~). (23) 

We obtain the simplest matrix elements by omit­
ting N. Each successive term in the expansion of 
1 + N adds one meson operator in the one-nucleon 
matrix elements (23), so that the inhomogeneous 
term (17) is represented as an infinite sum of 
products of one-nucleon matrix elements of the 
type (23). The operator : ( 1 + N) L: relates only 
to the interaction of the particles; all self-energy 
effects contained in L are eliminated automatic­
ally, since we are using functionals with the eigen­
fields F. The operator N itself describes the 
exchange of virtual mesons between the various 
nucleons ( i ¢ j in Eq. (22)). 

The rule (20) for calculating matrix elements 
of field operators between products of one-nucleon 
functionals completes the specification of the sys­
tem of equations (15) for the transition amplitudes 
RBA• in the sense that it expresses the inhomo­
geneous terms in the system in terms of quantities 
well known in the quantum field theory, the single­
nucleon matrix elements. If the solution of the 
system (15) exists, we accordingly require, in 
order to find it, a knowledge of the one-nucleon 
problem, i.e., of the quantities (23). The charge 
renormalization also relates to the one-nucleon 
problem, since a knowledge of ( F a• Vs F {3) is 
required for the determination of the renormal­
ized charge. All the one-nucleon matrix elements 
are already renormalized. In the static theory the 
quantities (23) can be related to the scattering am­
plitudes on the energy surface, and the charge re­
normalization is trivial. 4 

A possible method for the solution of the sys­
tem (15) with the inhomogeneous terms in the 
form (20) is an expansion in terms of the number 
of mesons (if we disregard perturbation theory). 
We may assume that the larger the number of 
mesons by which a state n differs from the ini­
tial and final states A and B, the smaller is 
the part played by this state, and on this basis 
we can throw out some of the terms of the sum 
in Eq. (15). We must then break off the expansion 
of 1 + N in a similar way. When this is done, 
however, if we express the quantities (23) in terms 
of matrix elements (Fa, VsF{3), (F~, VsF{3) 
( F& is a state with one nucleon and one meson) 
and the other simplest one-nucleon quantities that 

can be taken as a basis, then in general each of the 
quantities (23) is a series involving summation 
over the eigenstates of the single-nucleon Hamil­
tonian. From this series also one must take only 
a suitable number of terms. The range of useful­
ness of such a method can be judged only from 
the results. We note that the series (22) that de­
fines the operator 1 + N arose as a result of the 
expansion of the one-nucleon state vector F ( i, A+) 
in a series in A+ - at. The successive terms of 
the expansion will fall off rapidly in cases in which 
the meson clouds of the various nucleons "overlap" 
only slightly, so that the mesons in a cloud inter­
act much more strongly with "their own" nucleon 
than with "a different" nucleon. Therefore it is 
to be expected that the higher the energy of the 
colliding nucleons (i.e., the greater the "overlap­
ping" of the clouds ) the more terms in the series 
(22) will have to be taken into account. 

If the number and types of the particles.do not 
change in the collision some simplification is pos­
sible. In this case one can use a treatment in 
which the methods of quantum field theory are 
used for the calculation of an effective potential, 
and the scattering amplitude is then determined 
by solving the Schrodinger equation with this po­
tential. Such an approach is possible only for the 
region of moderate energies, in which the concept 
of a potential can be used and the polarization of 
the vacuum can be neglected. 

3. DETERMINATION OF THE EFFECTIVE 
POTENTIAL 

Let us denote by K + W the total Hamiltonian 
in the phenomenological treatment, where W is 
the potential. For the eigenfunctions lf;~) of the 
operator K + W that belong to the continuous 
spectrum, the formal scattering theory gives 

~(±l ,1,o 1 W·t.<±> ,1,o 1 W·~o 
a = 'j'a- K- Ea 1= i~ 'fa = 'fa- K + W- Ea 1= i~ 'f'a• 

where lf!~ is an eigenfunction of the free-particle 
Hamiltonian K. For the scattering amplitude Rba 
= ( lf;(b), Wlf!~) we can then write either the linear 
integral equation 

R. W "' RbcWca 
ba = ba- £JE -E -i~ • (24) 

c c b 

or the nonlinear equation 

R. W ~ R;bRca 
ba= ba- c Ec-Eb-i~ 

(25) 

where the summation goes over both the continu­
ous spectrum c and the discrete spectrum d. 
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Here Wba = (~.WI/I~) is the Born approximation 
to the scattering amplitude. Usually the potential 
is determined by solution of the linear equation 
(24). In the treatment we are considering it is 
more convenient to use the nonlinear equation (25). 
In addition one can generally avoid solving the 
equation connecting Rba with Wba· 

Let us separate out from the whole sum over n 
in Eq. (15) the sum over the states c (of the con­
tinuous spectrum) with the same particles as there 
are in the states a and b (it is assumed that the 
collision does not change the types of the particles): 

"' R* nb Rna 
Rba = (<l>b, (H- Ea) <Pa)- Ll E -E -i€ 

n+c,d n b (26) 

-~ R;bRca. -~ (X.t,(H-Eb)<Db)*(x.t:(H-Ea)<Da) • 
.,. Ec-Ea-1€ d Ed-J:.b 

The last two terms in Eq. (26) are analogous in 
form to the last two terms in Eq. (25). Let us now 
determine the potential W from the requirement 
that the transition amplitudes between the two­
nucleon states be equal to the corresponding am­
plitudes in the phenomenological treatment: 

('Yb-), (H- Ea) <Pa) =(~h-), W'~~), 

(Xd, (H- Ea) <I>a) =(~d. W~~). 
(27) 

Then comparison of Eqs. (26) and (25) shows that 

)! R~b Rna (28) 
W'ba = (<l>b, (H- Ea) <I> a)- ..:...J 1:. E · • 

n.pc,d n- a-le 

where the sum is over all states except the states 
with the original particles. This determination of 
the potential is valid also in the case in which 
nucleon-antinucleon pairs are taken into account. 

APPENDIX 

As is well known, 5- 7 the introduction of an effec­
tive potential by different methods can lead to dif­
ferent results. This ambiguity is due to the arbi­
trariness noted above in the choice of the basis 
functions <I> and arises from the fact that in quan­
tum field theory the concept of noninteracting 
dressed nucleons is defined only asymptotically. 
In the phenomenological treatment, on the other 
hand, the wave function of the noninteracting nu­
cleons is defined for all values of Rij. Therefore 
the unique determination of the potential requires 
a knowledge of the state vector of the noninteract­
ing dressed nucleons for arbitrary Rij· 

The formulas (27) and (28) for the potential W 
do not leave any ambiguity, but in these formulas 
it is assumed implicitly that one has chosen for ci> 
the wave function that "correctly" describes the 
noninteracting dressed nucleons for finite Rij 
also. This assumption is included in the equations 
(27) outside the energy surface, since the replace­
ment of the basis functions ci> by other functions 
<I>' (with the same asymptotic behavior) leaves 
Eq. (27) unchanged only on the energy surface. 

In the case of two nucleons the adiabatic poten­
tial derived by Klein and McCormick5 corresponds 
to the representation (6) for <I> without additional 
factors, and the potential obtained by Miyazawa8 

and the writer3 corresponds to the choice of the 
function <I> with normalized amplitude 

(<Pa/<Pa) = 1, 

where ( I ) means that in the scalar product the 
integration over the space coordinates is not car­
ried out. 

We shall derive the formula (20). We shift the operators a+ to the left to A0 and the absorption 
operators a to the right to A0; then according to Eq. (6) a typical one of the quantities making up the 
left member of Eq. (20) will be 

' ~ ' ~ ' + M = (F1 (1, a') F.2 (2, a') ... A 0 , Fdl, a') F 2 (2, a ) ... A 0 ), 

where Fi and Fi can differ from F by the absence of one or more virtual mesons. We have 

From this, writing Ai = ~ 8/Baj for i ¢ j, we have 
J 
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(A.1) 

Changing back from the quantities Fi and Fi to the one-nucleon functions F, we get from this the 
formula (20). 
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