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Equations are obtained for the semi-classical quantization of the motion of an electron in a 
metal in an inhomogeneous magnetic field, the gradient of which is perpendicular to the direc
tion of the field. The de Haas-van Alphen effect in a pulsed magnetic field is analyzed from 
the point of view of possibly using it to study the Fermi surface of the electron gas in a metal. 

IN reference 1 the author investigaged the de Haas
van Alphen effect in a sufficiently slowly changing 
magnetic field when one can start from the formulae 
for the quantization of the motion of an electron and 
the expression for the magnetic moment of an elec
tron gas in a uniform magnetic field. 2 In the pres
ent note we obtain the equations for the quantization 
in an inhomogeneous magnetic field, the gradient of 
which is perpendicular to the direction of the field, 
and the role of the inhomogeneity of the field in a 
pulse method of investigating de Haas-van Alphen 
effect is elucidated. 

1. We shall consider the motion of a particle 
with an arbitrary dispersion law E = E ( Px. Py. Pz) 
and charge e in an inhomogeneous magnetic field 
H, directed along the z axis. If the y axis coin
cides with the direction* of grad H, the classical 
motion of the particle proceeds according to 

rJ) (P x• Py, Pz) = E =canst, Px =canst, Pz =canst, (1) 

where the components of the kinetic momentum P 
are most conveniently expressed in the form 

y 

Px=-f ~ H(y)dy,Pu=Pu, Pz=Pz• (2) 
y,(Px> 

plays the role of the center of the oscillations 
along this axis. 

In the quantum case the components (2) of P 
correspond to operators with the following commu
tator relations 

where y = y (Px. Px) is determined from (2). 
From (4) the semi-classical quantization con

dition 

plPu/H(y)]dPx=(n+y)ehjc, (O<y<I) (5) 

follows. The integration in (5) is performed along 
the closed curve (1). 

Equation (5) determines implicitly the depend
ence of the energy levels E on the quantum num
bers n, Pz, Px. or on the quantum numbers n, 
Pz, Yo. which is the same. 

If the distance o, over which the magnetic field 
H ( y ) changes appreciably, is considerably larger 
than the radius r of the classical particle orbit 
in the magnetic field H (Yo), we can for fixed Pz 
and Yo ( Px) on the left hand side of the quantiza
tion equation (5) retain only the main terms in an 
expansion in powers of r/o: 

where the function Yo ( Px) is determined by the 
relation 

{ r 1 dH 1 r; [d"H 3 (dH )•]} ehH S(c, p) 1-------- --- - = (n +y)-; 
z H0 dy0 2 H0 dy~ H0 dy0 c 

Yo(Px) 

Px =- ~ ~ H (y) dy. (3) 
0 

We shall assume for the sake of simplicity that 
H (y) > 0. It is then clear from (1) and (2) that the 
classical motion of a particle corresponding to a 
closed surface rE ( Px. Py. Pz) = E, is bounded 
along the y axis, and the coordinate Yo =Yo ( Px) 

*Such an inhomogeneous magnetic field is necessarily sole
noidal (curl H ,P 0) and can, therefore, not be purely magneto
static. 
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(6) 

Ho = H (Yo); 

where S ( E, Pi ) is the area of the cross section 
of the energy surface rE ( p) = E with the plane 
Pz = const, J 1y ( E, Pz ) the static moment, and 
J 2y ( E, pz) the moment of inertia of the area 
S ( E, Pz ) with respect to the Py axis. 

To conserve the quantization equations (5) and 
(6) in an electric field, produced by a non-static 
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magnetic field (see reference 1) it is necessary 
that the energy, gained by a particle in the elec
trical field during a period of revolution in the 
classical orbit, be small compared to thl;l distance 
between the quantized energy levels. We make a 
corresponding estimate in the case where Eq. (6) 
is justified, when the simple expression for the 
distance between the energy levels is well known 
to be 

~s = tw• = 1i (eH / m·c) =tL·H; 

where m* is the effective mass and J.t* the ef
fective magnetic moment of the particle. 

From an analysis of the Maxwell equations it 
follows that if T is a characteristic time of change 
of the magnetic field, the electrical field strength 
E"' H6/cT. The above mentioned requirement 
leads thus to the inequality. 

(7) 

where A. is the de Broglie wavelength of a particle 
with energy €. 

If the inhomogeneity of the magnetic field is 
vanishingly small, Eq. (6) goes over into the well
known quantization equations in a homogeneous 
field. 2•3 Corrections to the particle energy levels 
in a uniform magnetic field, 2 •3 arising from taking 
the field inhomogeneity into account in Eq. (6), are 
meaningful, of course, only if they are consider
ably larger than the inaccuracy of the semi-classi
cal approximation itself, i.e., when 

r1j o :?;>().I r)2 and rU 'f}-:? (f../ r)2• 

2. We shall consider the de Haas-van Alphen 
effect in a pulsed magnetic field. Let the external 
field which is directed parallel to the surface of 
the metal specimen increase from zero to a maxi
mum value Hm in a time interval ( 0, tm) and 
the general duration of the pulse T "' tm. The 
magnetic field inside the metal is then a function 
of the y coordinate measuring the depth into the 
sample from its surface, and a characteristic 
measure along the y axis 6 "' ( c2T /am) 1/2, 

where am = a ( Hm) is the electrical conductivity 
of the metal in a magnetic field Hm. 

The energy levels of an electron in such a sam
ple are determined by Eqs. (5) or (6)* where Yo 

*Strictly speaking, if the external magnetic field vector and the 
normal to the surface of the sample do not coincide with the prin
cipal axes of the electrical conductivity tensor, the direction of 
the magnetic field inside the metal changes with depth. However, 
in the practically most interesting cases, considered below, this 
rotation of the H vector can be neglected when condition (7) is 
fulfilled. As to inequality (7) in metals, there is a sufficiently 
wide range of T for which it is satisfied. Indeed, if we take for 

changes within the limits 0 to L, where L is 
the length of the sample along the y axis. 

As is well known, 2 the oscillations of the mag
netic moment of the electron gas with a change of 
the magnetic field is determined by a change of 
the extreme value nm ( H) - the integral quantum 
number n, corresponding to the limiting Fermi 
energy in a factor of the form 2mm (H). Since in 
a homogeneous field n is very simply connected 
with S ( €, Pz ) , an investigation of the periods of 
the oscillations in a uniform field enables one in 
principle to reconstruct the Fermi surface for the 
electrons in a metal.4 In order that a study of the 
periods of the oscillations in a pulsed field can 
also give interesting information about the Fermi 
surface, it is necessary that nm be directly con
nected with the cross sections of that surface. 
From the foregoing. it is clear that this only 
takes place if r « 6, when Eq. (6) is valid. In 
that case the relative change in period P = 
.6. ( 1/H0 ) for the oscillations of the magnetic 
moment of a thin metal layer at a depth y =Yo 
as compared to the period in a corresponding 
uniform field P 0 is, as to order of magnitude, 
equal to 

'OP /Po= J P- Po I/ Po~ r1m j'o-+-- r~m / 'f}, Po= eh I cSm, 

(8) 

where Sm, rim• and r 2m are determined for 
the extremal cross section of the Fermi surface, 
corresponding to the given oscillations. If the 
center of gravity of the extremal cross section 
lies on the Py axis (this will, for instance, be 
the case for a central cross section of the Fermi 
surface, possessing a center of symmetry), rim 
= 0 and the order of magnitude of the quantity 
6P/P0 is determined by the second term on the 
right hand side of (8). Otherwise 6P/P0 "' rim/6. 
We note that in magnetic fields Hm "' 105 Oe for 
the basic electron groups rm "' 10-4 to 10-5 em. 

From (8) it follows that if rm « 6 the above
mentioned periods are practically not changed, 
while the change in the phase of the oscillations 
compared with those in a uniform field can be 
appreciable, since it is of the order of magnitude 
(6P/P0 )(E0 /J.t*H) where Eo is the limiting Fermi 
energy. 

Since the determination of the function H = H ( y ) 
is a non-trivial mathematical problem for compli
cated pulses of the external field and when a de
pends essentially on H in strong fields, quantita-

.\ an extreme estimate, ,\- 10- 8 em, and take into account that 
for the basic electron groups in metals at H"" lOS Oe the Larmor 
frequency w *- 1012 , we can write (7) in the form T /o- (om T I c2)'h 
» 10- 4 sec/m. 
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tive conclusions about the Fermi surface based on 
results of an investigation of the oscillations by 
means of pulses is possible only in those cases 
when the measured periods are directly connected 
with the change in the external field. In reference 
1 it was shown that those cases are (1) o » L, 
(2) o « L. If we take into account that an experi
mental measurement of the periods of the oscilla
tions enables us to obtain directly the cross sec
tional area of the Fermi surface only if rm « o 
[see (8)] and rm < L5, it becomes logical to use 
in the same connection the following limiting cases 
(1) w*TA. » o » L > rm, (2) L » o » rm; w*TA. 
» o. The experimental conditions of Shoenberg6 

correspond to the first case. 
In the first of the cases noted by us it is pos

sible to observe the oscillations with the change 
in the external field practically during the whole 
duration of the pulse, but in the second case only 
for t < t 0, where t = t 0 corresponds to the mo
ment when on the surface of the sample dH/ dy = 0. 
One can show that always t 0 > tm .1 

The author expresses his thanks to I. M. Lif
shitz and M. Ia. Azbel' for discussions. 
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