
SOVIET PHYSICS JETP VOLUME 35 (7), NUMBER 3 MARCH, 1959 

ENERGY DEPENDENCE OF MULTIPLE-PRODUCTION REACTION CROSS SECTIONS 

NEAR THRESHOLD 

A. F. GRASHIN 

Moscow Engineering Physics Institute 

Submitted to JETP editor April 3, 1958 

J. Exptl. Theoret. Phys. (U.S.S.R.) 35, 719-725 (September, 1958) 

The energy dependence of multiple-production reaction cross sections near threshold is ob­
tained, with account taken of effects of the Pauli principle and of the Coulomb interaction of 
the emitted particles with the residual nucleus. In the general case the recoil of the nucleus 
and the Coulomb interactions between the emitted particles were neglected. For the case in 
which not more than one charged particle is among those emitted the nuclear recoil is taken 
into account and the formulas obtained are exact. 

THE functional dependence of the cross section on 
the energy near threshold for the reactions in ques­
tion can be found in general form, independent of 
the concrete interaction mechanism. This has been 
shown by Wigner for reactions with two particles in 
the final state. 1 It is a very simple matter to obtain 
the threshold dependence for reactions in which the 
final stage is that of the simultaneous emission of 
N neutral particles with zero orbital angular mo­
menta from an infinitely heavy complex (nucleus), 
i.e., under the conditions of short-range interaction 
and symmetry of the wave function in the coordi­
nates of the particles.2 Hart and othe.rs3 have stud­
ied the special case N = 2 ( emission of a charged 
particle and a neutral one) with arbitrary orbital 
angular momenta and with inclusion of effects of 
the nuclear recoil. 

We shall consider the case of emission of N 
arbitrary particles with masses JJ.a « Mnuc ( Mnuc 
is the mass of the residual nucleus), with inclusion 
of effects of the Pauli principle and of the Coulomb 
interactions of the emitted particles with the nu­
cleus (of charge Ze » e). 

It must be pointed out that for N ::=: 2 the prob­
lem is considerably simplified by the use of the 
momentum representation, since this removes the 
necessity of finding the explicit form of the Green's 
functions in the coordinate representation.2•3 Even 
the calculation of the asymptotic behavior of the 
Green's functions, which is needed for the construc­
tion of the reaction amplitude in the coordinate rep­
resentation, involves considerable difficulty. 3 If 
there are groups of identical particles among those 
emitted, then in the determination of the threshold 
energy dependence the classification in terms of 
the permutation symmetry is often entirely suffi-
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cient for the choice of the allowed channels (in­
cluding those in terms of the total angular momen­
tum), and one avoids the necessity of examining 
arbitrary orbital angular momenta of the emitted 
particles. 

1. NEUTRAL PARTICLES 

In the center-of-mass system and in the vari­
ables ra=Xa (JJ.a/M),l/2, ka=Pa(M/JJ.a)1/ 2 

the reaction amplitude (with nuclear recoil neg­
lected) has the form* 

F (k 1 .•• ktd 
(1) 

where U ( r, q) is the total interaction energy of 
the emitted particles and the nucleus (it is essen­
tial that all the inteTactions are short-range ones), 
>It ( r, q) is the exact wave function, including all 
the reaction channels, and cp nuc ( q) is the final 
state of the nucleus; the integration is taken over 
the entire set of particle coordinates r and nu­
clear variables q. As can be seen from the nota­
tion, the coordinates and momenta ra, ka of the 
particles ( relative to the nucleus) are measured 
in certain conventional units that depend on the ar­
bitrary auxiliary mass M. 

The amplitude (1) must be symmetrized in the 
ka in a definite way. Since we are interested in 
the functional dependence, the proportionality co­
efficients in the equations will be dropped. The 
reaction cross section is expressed in the form 
of an integral over the possible final states of the 

*We take throughout h = c = 1. 
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where E is the energy of the exit channel, i.e., 
the total kinetic energy in the c.m. system. 

To obtain the dependence aN ( K ) for K - 0 
it is enough to take the lowest power of k in the 
expansion of the expression (1). If the expansion 
begins with the m-th power, then 

(2) 

(3) 

It is obvious that U ( r, q) >¥ ( r, q) 'Pri.uc ( q) is of 
zeroth order in k, and we have only to calculate 
the lowest term in the expansion of 

exp {- i 6 ka · ra} in powers of 6 ka · ra which 

remains after the symmetrization in the ka. 
The symmetry of the wave function is given by 

the Young arrays ( cf., e.g., reference 4 ); there 
exist several possible arrays for any prescribed 
set of N particles. For each Young array there 

is a definite lowest power ( 6 ka • ra) m which 

does not vanish identically through the symmetri­
zation. Out of all the possible Young arrays for 
the given N particles there will be contributions 
to the reaction at threshold only from those which 
have the minimum value of m. We shall calculate 
this minimum exponent. 

An identical vanishing of a symmetrized power 
term can occur only through alternations ( anti­
symmetrizations ) through the columns of an array, 
so that we shall not concern ourselves with sym­
metrization along the rows of an array. If an ar­
ray is possible with a single row, not containing 
alternations, then m = 0. Thus for bosons or for 
identical fermions numbering N ::: 2s + 1 ( s being 
the spin of the fermions) we get the previous re­
sult of reference 2. 

We shall now consider the case of N identical 
fermions with spin s = !, and shall show by mathe­
matical induction that m = N - 2 for N ?!: 2. For 
N = 2, 3 the possible arrays are I, II, III, IV (see 
figure). It is easy to verify that m1 = 0, mn = mm 
= 1, m1v = 2. It remains to show that when we go 
from N to N + 1 the minimum exponent increases 
from m to m + 1. We first note that, as in the pas­
sage from II to III, in going from the one-column 
array V to the array VI the lowest exponent does 
not change, so that the minimum exponent comes 
from arrays with the maximum number of columns 
(two in the case considered), and in the proof it 
suffices to examine transitions of the type VII -
VIII, in which the new cell that is added does not 
form a new column. To begin with we shall show 
that the m -th power vanishes for the case of N + 1 
particles. 

We denote the complete alternation through all 
N + 1 momenta ka (array VIII) by the symbol A. a 
An index (or several indices) under an alterna-
tion symbol A will indicate the set of correspond­
ing momenta through which the alternation is car­
ried out. We note that the original alternated func­
tion can depend on an altogether different set of 
momenta. For example, it can depend on only part 
of the momenta through which the alternation is to 
be taken, or can even be a constant. After the al­
ternation it will in the general case depend on all 
the momenta of the alternation. In the proof we 
have to break up the complete alternation into two 
stages: we first carry out the alternation through 
a certain part of the set of momenta, and then the 
remaining part of the alternation with the remain­
ing momenta. For example, the complete alterna­
tion can be broken up into the alternation through 
the momenta k13 of the N particles ( {3 = 1, 2, 
... N) and the subsequent alternation through k13, 
kN+t without alternation of the k13. We denote 
the second stage by the symbol A . Now sep-

N+t, ({3) 
arating the term kN+1 rN+ 1 from the sum 

N+t 
6 ka · r a and expanding the m -th power of this 
a=t 

sum by the binomial theorem, we get 
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All the terms of this expansion except the last van­
ish already on the alternation through the k13, since 
this alternation is equivalent to array VII, for 

N 
which all powers of the sum I:) k13 · r {3 vanish up 

{3=1 

to the ( m -1) st power inclusive (case of N par­
ticles). 

We transform the last term in the following way: 
we break up the m-th power into a sum of N terms 
of a single type, 

(kl.rl) c~l k~-r~) nt-l 

+ (k2•r2) (Q~ k~·r~)"'-1 + ... + (kwrN) ( ~ k~.r~)m-l 
~~-1 ~-1 

N 
In each term we single out from I:) k/3 • r {3 the 

{3=1 

term that appears as the coefficient of the ( m - 1 ) st 
power, and corresponding to this we break up the 
alternation of each term into two stages: 

~ ( ~ k~.r~)· m 

~ -1 

(4) 

Let us take, for example, the first term of the sum 
(4) and show that it vanishes already in the alter­
nation through y, N + 1 because of the vanishing 
of the factor 

(5) 

We note that the expression (5) can be regarded as 
a homogeneous polynomial of degree ( m - 1 ) in 
the coordinates rt> r 2, ••• rN with coefficients de­
pending on all N + 1 momenta ka. We now con­
sider another polynomial 

which includes (5) as part of itself. If we expand this 

latter quantity in powers of (~ ky · ry + kN+i · rN+i) , 
y=2 

it can be seen that it vanishes identically, since we 
arrive at the array VII with the numbering of the 
cells changed. This means that the factor (5) also 

vanishes, since it is a particular value of the other 
polynomial for rN+i = 0. 

Similarly one can show that each of the succes­
sive terms of the sum (4) vanishes, by going over 
to one of the arrays for N particles. 

Finally, we convince ourselves that the ( m + 1) st 
power does not vanish: 

(
N+I , m+I 

A )1 k~·r~)\ = A (kN+1.r N+1)m+IA1 + ... 
~ a-:!1 ·~+I.(~) ~ 

(m+1)m 2A( ~ )m-I ···+ 2 A (kN+I"rNH) LJk~~r~ 
N+1 (~) ~ ~-I 

(6) 

+(m+l) A (kN+"rN_,_1)A(~k~-r~)m N+I, (~) 1 ' B ~ _ 1 

All the terms of this expansion except the last two 
vanish on the alternation with respect to {3. In 
analogy with Eq. (4) we break up the next to last 
term of the expansion (6) into terms of the type 

After expanding the ( m - 1 ) st power in this term 
by the binomial theorem and alternating with re­
spect to y we have remaining 

It is easy to see that the further alternation through 
1, N + 1, ( y), and combination of all analogous 
terms together with the last term in Eq. (6) does 
not lead to cancellation. 

It is obvious from the proof that all arrays of 
two columns give the minimun degree m = N- 2, 
since it is immaterial to which column one adds a 
new cell. This means that all total spins S :S N/2 
- 1 give the same dependence IJ' ( K), and the 
cross-section for the largest total spin S = N/2 
vanishes more rapidly at the threshold by a factor 
K2. 

In order to go over to the case of an arbitrary 
set of N particles, we note that the result just 
established can be formulated in the following way: 

The exponent of the lowest power of(~ ka·ra) 
a=1 

that does not vanish on alternation throllgh a 
prescribed Young array is equal to the total 
number of cells in all rows of the array ex­
cept the first, and in going from N to N + 1 
it increases by unity if the new cell does not 
form a new column. (7) 
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Noting that no use was made in the proof of the 
possible number of columns, and that consequently 
the result (7) is valid for arrays with an arbitrary 
number of columns, in the case of arbitrary spin 
s we get: m = N - ( 2s + 1 ) for N ~ 2s + 1. 
For an arbitrary set of N particles the alterna­
tion must be carried out through a single common 
array, made up of the arrays for the different 
groups of identical particles written side by side. 
This gives for the minimum exponent: 

m=~m,, m;={O for N,.:::;;:2s,+l, 
t N;-(2s,+I) for N;:>2s,:+l, 

(8) 
where the sum is taken over all groups of identical 
fermions; Ni is the number of fermions of the 
i-th group, and si is their spin. 

It must be emphasized that Eq. (8) gives the 
minimum exponent in the expansion of the reaction 
amplitude that is possible according to the Pauli 
principle for the given set of emergent particles. 
In principle it is possible that there could be addi­
tional degrees of forbiddenness according to sym­
metry type, which could exclude the channels with 
the minimum m. In this case the degree m in 
Eq. (3) is given by Eq. (7) for the allowed arrays.* 

Equation (3) represents the first term of an ex­
pansion in powers of kR0 ( R0 is the radius of the 
nucleus, or more precisely the radius of the reac­
tion zone). With increase of N the errors accu­
mulate not faster than Nl/2, so that the region of 
applicability of Eq. (3) is limited by the inequality 
N172 KRo ~ 1. 

2. CHARGED PARTICLES 

Neglecting the Coulomb interactions between 
the emitted particles, we get for the reaction am­
plitude 

F (k1 ... kN) 
N 

= ~flf(ka, ra)U(r, q)':l:'(r, q)cp:(q)drdq; 
a-1 

tjl(ka, ra)=exp(-;::)r(I-i::) 

exp (ika•ra) F (i ~, 1,- i (kara. + ka.• fa)), 

aa=~Zzae2 , 

(9) 

zae is the charge of the a -th particle. The am­
plitude (9) differs from Eq. (1) only in that for the 
charged particles the plane waves are replaced by 
Coulomb solutions with the asymptotic forms made 
up of plane and converging waves. Using the ex-

*The degree m also has the following further meaning: 
in a given channel the orbital angular momenta of the emergent 
particles obey la:5; m (at threshold). 

pansion of the confluent hypergeometric function, 
we get for small momenta 

tjl(ka., ra)=tjl(ka., O)[I+ika.""ra+···Hfo(ra+na.•ra) 

+kafdr"'+""''ra.)+ ... J~tjl(ka., O)fo"'' (10) 

where na = ka /ka, and fl> f2,.. • are certain 
functions of the quantity( ra + na· ra ), the expan­
sions for which contain arbitrarily high powers. 

When the amplitude (9) is alternated through 
the group of neutral particles, according to Sec. 1, 
the contribution they give in the integrand is 

fr ( ~ k{3'r{3 )m. The alternation through the 

charged particles does not change the functional 
dependence, since for an arbitrary Young array 

A fl tjl(ka., O)f0 (r"' + Da.•ra.) 
ot ot (11) 

=IT tjl(kot, 0) An fo (rot+ Da.•rot) =¥= 0. 
ot 

a. " 

This means that arbitrary orbital angular momenta 
of the charged particles emitted give always the 
same threshold dependence. 

If among the N particles there are n charged 
particles ( "+ positive and n_ negative) and n0 

neutral particles, then near the threshold 
n N 

ON= ~ n 1 tjl (ka.. o) 12 r (k~. na.) n k~ dkydn.,. o (k2 - K2), 

a-1 Y-1 

where for the negative particles 

for the positive ones 

and 

is a certain function that is homogeneous of degree 
2m in the momenta k{3 of the neutral particles. 

In computing the integral over the hypersphere 

N 
6 ~ = K2 in Eq. (11) we need obtain only the 
y=1 

main contribution (method of steepest descent). 
For the exponential factors (from the positive 
particles) we have to find the position of the ex­
tremal point on the hypersphere under the condition 
n+ 
6 k~ = K2• Finally, setting K = ( 2ME ) 112, we get 
0!=1 
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L = }{3N -2 + 2m-n (12) 

+ e <;+> (2m + 2n0 + n_ + N - 1)} , 

( ) _ {0 for n+ = 0, 
e n+ -

1 for n+ "> 1. 

ni is the number of positive particles with mass 
J.Li and charge Zi, and p is the number of differ­
ent masses of the positive particles. The exponent 
m from the group of neutral particles is deter­
mined as shown in Sec. 1. 

The largest corrections to the threshold depend­
ence (12) are those from the errors in the expan­
sions (10), the subsequent terms of which give cor­
rections """ KR0 and ,.., ( KR0 ) ( Ze2 ( Mp.) 112 R0 ). 

The main contribution to the integral is subject to 
corrections ,.., K ( 27TZe2 ( Mp.) 112 ) - 1• Smallness of 
all these parameters also limits the region of ap­
plicability of Eq. (12). If the particles have an 
actual or virtual energy level E close to zero, 
there is the further condition* E ~ I E 1. 

Let us consider the special case N = 2, n = 1, 
treated in reference 3. The formula (12) gives 

a= E'la+m for n_=l, n+=O, 

a = E'f,+am/2 exp {- 27tZze2 'J( 'tl- f 2E} (13) 

for n_ = 0, n+ = 1. 

The minimum exponent is m = 0. If there is an 
additional forbiddenness from the orbital angular 
momentum of the neutral particle, then the lowest 
degree from the expansion of exp ( - ik · r) in 
powers of kr is l, where l is the smallest 
allowed angular momentum. This means that in 
order to use the formulas (13) in the case of ar­
bitrary orbital angular momentum l of the neutral 
particle we must taket m = l. 

*The effect of the interaction of the reaction products on 
the accuracy of the threshold dependence has been dealt with 
partly in reference 3. 

tSimilarly, we can take into account the raising of the 
lowest degree m owing to any additional forbiddenness in the 
group of neutral particles by finding the first term of the ex­
pansion of exp 1- i ~ k,a • r,al in powers of kr. 

The results of reference 3 differ from Eq. (13) 
only by the inclusion of the motion of the nucleus. 
A comparison of the results shows that inclusion 
of the nuclear recoil does not change the threshold 
dependence in the case n+ = 0, and changes the 
exponent in the case n+ d: 1 in the following way: 
J.L - p.Mnuc I ( J.L + Mnuc ) . It is not hard to show that 
for n = 0, 1 with an arbitrary number of neutral 
particles the formula (12) is exact if we replace 
the mass of the charged particle by its reduced 
mass, J.L - p.Mnuc I ( p. + Mnuc ) . To do this one 
must reduce the kinetic energy in the exact Ham­
iltonian with recoil terms to the canonical form 
by the method of Jacobi, leaving the coordinate 
of the charged particle unchanged.* 

In the case n :=::: 2 the formula (12) is already 
an approximate one, and it makes sense to use it 

only under the conditions ~ J.La « Mnuc• I~ Za I 
« Z. It can be expected that under these conditions 
inclusion of the motion of the nucleus and the Cou­
lomb interaction between the emergent particles 
will not change the threshold dependence for 
n+ = 0, and will shift the exponent by amounts 

"""~ J.La IMnuc and :S ?j I za I IZ for n+:=:: 1. 

In conclusion I express my gratitude to Profes­
sor I. Ia. Pomeranchuk for suggesting the problem 
and for a discussion. 
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