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On the basis of the general theory, 1 we have investigated the dependence of the surface imped
ance of metals in paramagnetic resonance on the dispersion of conduction electrons and on the 
angle of inclination of the constant magnetic field to the surface of the metal. The case of reso
nance saturation is examined. 

1. INTRODUCTION 

PARAMAGNETIC resonance occurs in a metal the 
electrons of which possess paramagnetic suscepti
bility when the metal is placed in both a constant 
magnetic field Ho and an alternating electromag
netic field H1 with the frequency w = n0 = 2J.LHo /n. 
Much experimental work2 has been done in recent 
years on paramagnetic resonant absorption of elec
tromagnetic waves impinging on metals. 

Dyson3 was the first to include electron diffusion 
from the skin layer in a theoretical examination of 
this effect. His theory is based on the free-electron 
model, that is, the conduction electrons were re
garded as free particles obeying the dispersion law 
€ (p) = p2/2m*. A formula was derived for the sur
face impedance when the constant magnetic field H0 

is perpendicular to the metal surface and the strength 
of the alternating field H1 is such that resonance 
saturation is far from being reached. 

In reference 1 the present authors developed a the
ory of paramagnetic resonance, based on a solution 
of the equation for the density operator of electrons 
regarded as a gas of noninteracting quasi -particles 
with an arbitrary dispersion law E ( p). This the
ory is free of limitations on the direction of the 
constant field H0 and the strength of the alternat
ing field H1• However, in the surface impedance 
of the metal was not obtained in that article. In 
addition to the case considered by Dyson, it is of 
interest to consider the dependence of surface im
pedance on the angle of inclination of the constant 
magnetic field to the metal surface, to determine 
the influence of dispersion upon impedance, and 
to study the case of alternating fields strong 
enough to produce resonance saturation. The 
present article is devoted to these questions. 

We shall make a few preliminary remarks on 
the relation of impedance to dispersion and to the 

angle of inclination I{! of H0 to the metal surface. 
First, it is clear that in specimens of thickness 
d « o ( o is the skin thickness) the electron dis
persion is quite unimportant. This is due to the 
fact that an electron is always in a field the am
plitude and phase of which are identical at all 
points of the specimen, so that the probability of 
spin reversal per unit time does not have to depend 
on the character of electron motion. We shall not 
consider the question of the influence of dispersion 
on the spin relaxation time T sp• which is always 
included in the theory as a parameter. It is also 
evident that impedance will not depend on the angle 
of inclination of H0 to the surface. 

The situation changes when we pass to bulk 
metal, wpere 6eff « d ( 6eff is the electron dif
fusion depth; it will be shown below that for metals 
we almost always have 6 « 6eff). In a strong 
field H0, when the radius r of the electron orbit 
is much shorter than the mean free path l, we 
can expect the impedance to depend on the angle l{J. 
Indeed, in a strong field ( r « l) an electron can 
perform Z/r revolutions between two successive 
collisions with the lattice. It is also easily seen 
that for a strong field the resonance frequency 
w = n0 is in the region of the anomalous skin ef
fect. For all actually obtainable fields r » 6. 
Therefore when the field H0 is almost parallel 
to the metal surface (I{!« r/Z) electrons which 
are close to the surface in a layer with thickness 
of the order of r will return Z/r times to the 
skin layer, that is, they will remain in the skin 
layer Z/r times longer than in the case of a per
pendicular field. Correspondingly, the resonance 
amplitude will be enhanced by a factor of Z/r 
compared with the effect when the field H0 is 
perpendicular to the metal surface. Stronger 
resonance results from the fact that the proba
bility of spin reversal increases with the time 

480 



ON THE THEORY OF PARAMAGNETIC RESONANCE IN METALS 481 

that an electron spends in the skin layer. In a 
weak magnetic field ( r » l) the resonance is 
not enhanced because collisions with the lattice 
will prevent an electron from continually return
ing to the skin layer. 

It must be noted that the picture of resonance 
which has just been given becomes somewhat com
plicated for the following reasons. We know that 
electron energy levels E: are isoenergetic sur
faces E ( p) = E: in momentum space possessing 
a definite orientation with respect to the axes of 
the reciprocal lattice. Two kinds of surfaces can 
be distinguished-closed and opened surfaces. In 
the first case for any orientation of the constant 
magnetic field Ho with respect to the crystal axes 
the electron trajectory in the momentum space 
(the cross section of the surface E ( p) = E with 
the plane pz = const, where Pz is the conserved 
projection of the quasi-momentum on the direction 
of Ho) will be closed, that is, the electron will 
perform a finite (periodic) motion in a plane per
pendicular to the field. For open surfaces both 
closed and open trajectories in momentum space 
are possible depending on the orientation of the 
magnetic field; in the latter case the electron will 
perform an infinite motion in a plane perpendicular 
to the field. We now note that because of the 
Fermi-Dirac distribution a contribution to reso
nance will not be given by all conduction electrons 
but only by those with energy in the range ~E "' 
kT close to the Fermi energy limit E0, where 
kT » t-tHo (or in the range ~E "'t-tH0, where kT 
~ t-tHo). Therefore the following cases are pos
sible: 

(a) In the interval ~E there are no open sur
faces. Then in a strong field H0 parallel to the 
metal surface we can expect intensified resonance 
compared with the case of a field perpendicular to 
the surface. 

(b) In the interval ~E we have open and closed 
isoenergetic surfaces. Here also resonance will 
be intensified in a strong field H0 parallel to the 
metal surface because of the electrons with closed 
trajectories in momentum space. 

(c) In the interval ~E there are only open iso
energetic surfaces. If the orientation of the metal 
surface plane is then such that in a field parallel 
to the surface the electron trajectories in momen
tum space are open, in any field H0 the electrons 
cannot repeatedly return to the skin layer because 
of infinite motion in a plane normal to the metal 
surface; therefore the resonance cannot be inten
sified. This is to some extent a special case be
cause of the strict conditions under which it occurs. 

Thus we can almost always expect that in a 

strong magnetic field H0 the surface impedance 
will depend essentially on the inclination of the 
field to the surface of the metal. 

2. A GENERAL EXPRESSION FOR THE IMPED
ANCE 

Let the test specimen be a flat plate of thick
ness d which is infinite in the two other dimen
sions. We shall use two coordinate systems, 
( ~yt) and ( xyz ), with the same origin. The t 
axis is directed into the metal normal to its sur
face; z is in the direction of H0• The slope of 
the magnetic field Ho with respect to the metal 
surface is given by the angle 1/J between the ~ 

and z axes. The incident plane electromagnetic 
wave is normal to the metal surface. 

In reference 1 it was shown that the field Ht 
inside the metal can be represented in the form 

. 0 H1 ~ H~ - 47rM, that 1s, B = H1 + 47rM ~ H1• Here 
H~ is the field in the absence of paramagnetic res
onance ( attenuated at the depth o); M is the res
onance magnetization, which is attenuated J near 
resonance) at the depth Oeff"' l ( Tsp Ito) 2; to 
is the mean free electron time. The relation B 
~ H~ holds true when the following inequality is 
satisfied:* 

lx!IJ2~/l~ff, x= 1-iTsp(w-Do), 

i.e., the frequency difference ~w = w - n0 is sub
ject to the limitation I ~w I T sp « O~ff 62• How
ever this limitation is not important since the res
onance width is determined mainly J;ly the spin re
laxation time: I ~w I T sp "' 1, and the inequality 
o « Oeff is almost always satisfied for metals. 
Indeed, in the anomalous skin effect o « l, while 
o ff » l for all actually attainable fields t Ho, so 
t~at obviously o « Oeff. Ih the normal skin effect 
o/Oeff ~ 10-14/to (for WTsp ~ 10), so that 0 « 
Oeff fails to hold only at temperatures which are 
higher or of the order of room temperature, in 
which case t0 ~ 10-14 sec. 

We shall now use the relation B ~ H~ to deter
mine the surface impedance of a metal under the 
given limiting conditions. The impedance when 
o .<: Oeff is found in Appendix (a). We define the 

*In reference 1 the interaction Hamiltonian H = ~ta·H 
(fL = -I e 111 /2mc) did not take the sign of IL into account 
explicitly. When this is done and by IL we mean ilL \;·then in t~e 
final formulas for the magnetization we must make the subsh
tutions Q 0 = 2fLHo/h ... - 0 0 = - ...tl.ci!!. and w ... - w. These 
substitutions do not affect the resuffs for nuclear polarization 
and the selective transparency of films. This comment will be 
taken into account in the present article. 

tin a strong field H0 the part of l is pl!lyed by r, the 
radius of the electron orbit in a magnetic field. 
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surface impedance tensor Zik by means of 

E; = (c I 47t) ZtR.HR. (i, k = ~. y). 

(We perform a summation over repeated subscripts.) 
In the absence of resonance E~ = ( c/47r) Z~kH~. 
Since B ~ H~ and E = E0 + E', where E' "' cz0 

( o/ Oeff) M, neglecting terms of the order of E', 
we have 

(1) 

Using the results obtained in reference 1, we can 
write 

Substituting this expression into (1), we obtain ac
curately to within linear terms in a: 

Et = :'/C (zJ~~. + 4: zJ.,a..,,z?~~.)Hlk· 

Hence we obtain the surface impedance tensor in 
paramagnetic resonance (for o « Oeff): 

Zth. = zJ11. + ·4: .zJn«nlz?k • (2) 

where z 0 is the impedance in the absence of reso
nance. In the present case 

a.~~ = «uu = ia sin ljl, «~u = -a sin2 1ji, «u~ = a. 

For a specimen of thickness d » o (far from reso
nance saturation) 

OocTsp d v-
a = - A27tx . Y- coth -3 -. x, 

cu3eff x eff (3) 

where A is a numerical coefficient of the order 
of unity which is associated with the conditions for 
electron reflection from the metal boundary (see 
Appendix b); Oeff =A. ( Tsp/t0 ) 112 is the distance 
traversed by an electron during diffusion in the 
time. T sp· The magnitude of A. depends essen
tially on the strength and inclination to the metal 
surface of the field Ho and the electron dispersion 
law. 

For closed Fermi surfaces 

2 d 6 e 
}_2 = __!_i!__ i Pz r d't\ d't'ey~· {V2 (ey6 -1)2 

2S6dp2 J(eY6_1)3~ ~ I; 

- 2\I\V,e'~6 (e'~6 - 1) + V~e'~6 (e'~6 + 1)}, 

where 
't'+'t'' 

V, = !!!;_ v" = iJeiJ(p) , V = i V d't", 
Vo 1 " P~; ) 

0 

y=To/io; ro=VoTo; 

a T ( ) IT T(p ) = _c_ as (Pz) = 2TCcm• (Pz) = Pz o; z eH0 iJ& - eH0 

T = t/T0 is the dimensionless time which denotes 
the position of the electron in an orbit in momen
tum space; T ( Pz) is the orbital period of elec
trons with given Pz in the magnetic field H0; 

S ( pz ) is the area of the intersection of the surface 
€ ( p) = € with the plane Pz = const; T0 is the char
acteristic time of revolution of an electron in the 
magnetic field, say on the order of T ( Pz); v0 is the 
characteristic electron velocity on the Fermi sur
face. Specifically, for quadratic dispersion € = 
m*v2/2, (27r)-1 Bs/8€ =m*, i.e., m*(Pz) is in
dependent of pz; therefore it is convenient to set 
T0 = T = 21rm *c/ eH0 and v0 = v. It is easily seen 
that in actuality T0 and v0 do not enter into A. 
and are introduced only for convenience in obtain
ing values. 

In the selected coordinate systems V 1; = 
Vz sin lf!- Vx cos lj!. Therefore, remembering 
that V x = 0 in virtue of the periodic motion of 
electrons in the xy plane, we obtain 

}.2 = 12 sin21ji + s2 sin ljl cos ljl + r2 cos21ji, (4) · 

where 

For weak magnetic fields H0 (y » 1 ): 

l ~ s ~ r ~ r0/y = Voto. 

so that for any angle 1/! the magnitude or A. is of 
the order of the mean free electron path. 

For strong fields H0 ( y « 1 ): 

l ~ ro/y, s ~ ro/Yy, r ~ ro, (5) 

so that for angles lj! » y the magnitude of A. is 
of the order of the mean free electron path and 
for lj! « yA. it is of the order of the radius of the 
electron orbit in the magnetic field. 

For quad:ratic dispersion in any field H0 (as- ' 
suming T0 = T and v0 = v) we have 

1 = ../vs, s = 0, r = Vs (/~ y 2) 

or }. 2 - v2t~ y2 + sin2tjl 
- 3 y2+1 

In the case of an open Fermi surface when the 
field Ho is oriented with respect to this surface 
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in such a way that the electron performs periodic 
motion in the xy plane, that is, Vx = 0, a is also 
given by (3). When Vx"" 0, a is given by (3) with 
the following substitution for A.: 

f-2 = r 2 l lim 
o 2 a- oo 

This expression is obtained for A. when we seek 
a solution of Eq. (30) in reference 1 which is 
aperiodic and bounded with respect to T. Similarly 
to (4), 

1.2 = l 2sin2o/ + s2sin o/ coso/+ r2 cos2 o/, 

where, as is easily seen, for any field H0 (with 
arbitrary y) 

If in ~E "' kT (or ~E "' ~-tH0 , with kT « J.tHo) 
there are both closed and open surfaces E ( p) = E, 

then generally the magnetization can be represented 
in the form 

(6) 

where M1 and M2 are the contributions to the 
magnetization from the groups of electrons the 
energy levels of which are represented in momen
tum space by closed and open isoenergetic sur
faces, respectively. Keeping in mind all that has 
been said above regarding resonance, we can infer 
that for a weak field H0 ( y » 1 ), independently 
of the angle 1/Jt> M1 and M2 attenuate at the depth 
o~ff"' v0t0 (Tsp/t0 )1/2, with M1 "' M2• For a 
strong field H0 ( y « 1 ) and 1/J » y we again have 
M 1 "' M 2 and the attenuation depth of both expres
sions is of the order of O~ff· For angles 1/J « y 
when the field orientation with respect to open sur
faces is such that Vx = 0, the attenuation depth of 
M 1 and M 2 of the order of yo~n; if Vx"" 0, M 1 

attenuates at the depth yo~ff and M2 at the depth 
O~ff· Then Mt( 0) "' M2 ( 0 )/y » M2 ( 0 ). 

When ~E has only open surfaces M ( t) = 
M 2 ( t) and M2 ( t ) has the previous properties. 
It was stated above that the resonance part of the 
impedance is given by M ( 0 ). We can therefore 
affirm that the specific form of the dispersion law 
does not essentially affect the dependence of the 
impedance on the angle 1/J (with the exception of 
the "special" case). The presence of both closed 
and open surfaces in the interval ~E when the 
magnetization is given by (6) could, for example, 
affect the selective transparency of films .1 

We now note that for films with d « Oeff, as 
can easily be seen from (3), impedance is inde
pendent of 1/J. Therefore the most interesting 

case is that of bulk metal ( d » Oeff), which we 
shall consider hereafter. 

3. SURFACE IMPEDANCE IN AN OBLIQUE FIELD 

In the general case the formulas for surface im
pedance are very complicated. Therefore for sim
plicity we shall consider only the case in which the 
incident wave in linearly polarized (with non-van
ishing components Eg and H1y ). Then the absorp
tion of electromagnetic energy is given by the com
ponent Zgy of the impedance tensor: 

P = (c/47t)2 / H1 \2 ReZ~u· 

From (2) and (3) we have (omitting the sub
scripts g, y ) 

Z = zo { 1 - zo x.OoTsi> c• } • 
(o)A(KTsp fi0)'1• 

(7) 

It is easily seen that Z will depend on 1/J only in 
the anomalous skin effect. Equation (5) shows 
clearly that this requires a strong magnetic field 
H0• For y«1 wehave H0 »(3m*/5m0 )10-7/t0 

oersteds, where m*/m0 is the ratio of the affec
tive mass to the free electron mass; w » 2'1l"m*/ 
5m0t0 sec - 1• Thus for t0 "' 2 x 10 -u sec and 
m*/m"' 1 we must have fields H0 » 3000 Oe and 
resonance frequencies w » 27T x 1010 sec-1• 

Two cases are conveniently distinguished: (a) An 
oblique field and (b) a parallel field. 

(a) As shown in reference 5, the impedance zO 
in a field H0 inclined to the metal surface differs 
from the impedance for H0 = 0 only in a very nar
row range of angles 1/J < zp1 "' (r0 /l)(o/r0 ) 213• 

Therefore when 1/J » zp1 we use for Z0 the famil
iar expression 

zo = i 2 (azt~~·(o) (1 + i V3>, C1 =-} < 47t2 V6)'1.. (8) 

From (7) and (8) we obtain 

Re z = c;_ Co) (ll2 /) '/, {_!__ + x.00T sp "(821) 'I, a:+ V3~ } 
V2 c• Cl A (Tsp I to)'l• V 1 + r;P A(o)' ' 

(9) 

where 

IX= (Y1 + T2 £lcu2 + 1)'1•, sp (10) 

~=sign !leu (Y1 + T2 £lcu2- 1)'1•, sp 

Equation (9) shows that the width of the resonance 
curve is independent of 1/J while the resonance in
tensity changes considerably as 1/J is varied from 
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0 to 1r/2 (for closed electron trajectories in mo
mentum space). The ratio of the ordinate of the 
resonance curve at 1/J = 1r/2 to the ordinate for 
arbitrary 1/J will be 

Y {ljl) = Re Zres(n/2) = Im Zres(n/2) 
Relres(<Ji) ImZres(<Ji) 

=-} {l2 sin2 1jl + s2 sin ljl cos ljl + r 2 cos2 1jl)'l•, 

where Y varies between r/Z and 1 (see the 
figure). 

25 50 75 90 ,p" 

Y(l/1) for the quadratic dispersion law: a) - y = 0.5; 
b) y = 0.2; c) y = 0.1. 

(b) In a strong field H0 ( y « 1) which is almost 
parallel ( 1/J « 1/Jt) to the metal surface the imped
ance z0 depends on the magnetic field. We note 
that in such a field cyclotron resonance occurs at 
frequencies w which are multiples of 21r/T0 and 
that this resonance depends essentially on the law of 
electron dispersion in the metal. Paramagnetic res
onance occurs at frequencies w = ~0 which generally 
do not coincide with the frequencies 21r/T0 since T0 

involves the effective electron mass while ~0 
clearly involves the free electron mass. Therefore 
for z0 ( Ho) we can use the expression for nonreso
nant impedance in a parallel field with quadratic 
dispersion (dispersion is not important far from 
resonance6 ): 

zo (Ho) = (1 +w2t~)''• ( 2;7)'lq9s er;:,;"t?'exp {in+ tst c.>to}. 

Here 

H = 7t:, Vo V2TCmN j1 +:to ~-'l·~ H0-:J> H J1 + iwt0J. 

When wt0 « 1 the corresponding formulas for 
Re Z and Im Z are obtained from (9) after the 
substitution z- l27rH/H0 with A.= r 0 = v0T0• 

4. RESONANCE SATURATION 

In the calculation of energy absorption in quite 
strong fields H1 we must take resonance absorp
tion into account. Here again we shall consider 
for simplicity the incident wave to be linearly po
larized. For a specimen of thickness d < o the 
expression for the resonance part of the absorption 

is analogous to the corresponding expression in the 
theory of nuclear resonance: 

p = c.>H~ .00xTsp 2!1-Hl 
res 4 I K 12 + .Q2T2 ' Ql = -1i.-

1 sp 

Resonance absorption occurs when H1 » 5 x 10-a· 

x T~~ oersteds. 
For bulk metal ( d » Oeff) in the limiting case 

o » Oeff the ::tbsorption is given by P = ( c/47r)2H¥R, 
where 

z = R. + iX = ~ E (0) -= zo { 1 + 4 nM (0)}. 
c H1(0) H~(O) 

The magnetization M ( 0) with resonance satura
tion taken into account will be1 

M(O) = 

We shall now give the formulas for the reso
nance part of the impedance. For the normal skin 
effect 

2 ~- ~ xc.>.OoTsp82 ( oc V2T,.~c.>82 . )-1 
R.res= -4TC I 21KI c•a 1 + TKT n 1)2 n~, ' 

eff o eff 

X res= - (ex/~) R.res, 

where a and {3 are given by (10); ~ti = 2J.!Hti/ff, 
H1i is the strength of the wave impinging on the 
metal. We note that both far from resonance and 
at resonance Rres /X res = - {3/ a· 

For the anomalous skin effect 

C~ x0.0T8 p (821)'1•c.> oc + ¥3~ 
R.res = ¥2 c•aeff I K I 

{ CiV2T8 pc.>(82t)'l, oc }-1 Jl3oc-f3 
X 1 + 4n•noa~ff I xI n~, , Xres = - ~+ V 3[3 R.res· 

The ratio Rres /X:res is independent of Hti just 
as for the normal skin effect. 

We note that for bulk metal resonance satura
tion requires considerably higher incident field 
strength than in the homogeneous case. Thus for 
the normal skin effect with w ,...., 108 sec -1, t0 ,...., 

10-13 sec and Tsp,...., 10-7 sec we have H1i » 5 Oe, 
whereas in the homogeneous case under the same 
conditions we have H1i » 0.4 oersteds. 

APPENDIX 

(a) The region where (2) can be applied is 
bounded by the inequality o « Oeff· o ~ Oeff refers 
entirely to the region of the normal skin effect 
( j = a"E), where without any special difficulty we 
can obtain an exact expression for the impedance 
through simultaneous solution of the equations1 
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u (vz, 0) = qu (- Vz, 0) + (1 - q) u (0), (2a) 

where 

B1 = H1 + 47tM, M = ixHou, 

1/t~ = 1/fo + 1/Tsp- i (oo- 0 0). 

Equation (2a) applies to a field H0 prependicular 
to the metal surface with quadratic dispersion. 
For simplicity we also assume d = co. Electron 
reflection from the metal boundary is character
ized by the reflection coefficient q, with q = 1 
for specular reflection and q = 0 for diffuse re
flections. 

Solving (2a) and averaging the solution over the 
Fermi surface, for the magnetization M with spec
ular reflection we obtain the integral equation 

t" 
M (z) = __()_ 

fo 
00 ~~ 

X ~ R (I z- ~I) {(1 + 4"-ixtoDo) M (q + ixtoDoH1 (~)} d~, 
-00 

where 

Performing a Fourier transformation of (3a) and 
of the equation "for H1o we obtain 

~ M (k) = R (k) {(1 + 4o.ixtoDo) M (k) + ixt0DoH1 (k)}, 
to 
2H~ (0) + k2H 1 (k)- 2io-2H 1 (kj = 81tW2M (k), (4a) 

where 

Hence 

00 

R (k) = ~ eikzR ( I z I) dz = 
-en 

o = ----:o=c==--
V 2mu<r 

21> 2H~ (0) 
H1 (k) = k•a2 - 2i 

(5a) 

{ 8rtzf00 0 R (k) I (1> 2k2 - 2i) } 
X - 1 + tIt"- R (k) [1 + 4rtizl00 01>2k2 1 (1>2k2 - 2i)] • (6a) 

0 0 

The second term within square brackets in the de
nominator can always be neglected compared with 
unity since usually t0~0 ~ 1, whereas x ,....10-6• 

Performing the inverse Fourier transformation 
of (6a) and remembering that Hi( 0) =- ( 411i.o/c) x 
E ( 0 ), for the impedance Z = ( 47r/c) E ( 0 )/H1 ( 0) 
we obtain 

co (7a) 
X ~~~~=--~~R~(k~)_d_k~~~~~~} 

~ [1+f0/T8P-it0 (w-l20)-- R(k)J[1-1>2k212ij2 ' 
0 

where z0 = 47rwo/ic2 V2i. In deriving this expres
sion we have assumed the second term in curly 

brackets to be small compared with unity. Equa
tion (7a) agrees, as was to be expected, with (71) 
in Dyson's article3 for d = co. 

The i'htegration in (7a) is easily performed if 
we note that for t0 I ~w I « 1 we can use the reso
lution R(k) !'<! 1- k2Zt2/3, since under this condi
tion only small values of kZ0* are significant in the 
integrand. The integral then becomes 
w 00 /~p 
~~ dk 0. l 1/ -

1~2 ~ _(_x_+-----;l>~,-l-f·k-2)_(_1 __ -:-a2-k2-/2-i-:-)2- ' eff• = 0 y 3/o • 

For 6 « Oeff, subject to the condition I K I « 
( 6eff I 6 )2, we obtain for the impedance: 

0 T c" 
z = zo { 1 - iZo X o sp ~~ '. 

"'aeff,Vx J 

which agrees exac~ly with (7). ( The appearance of 
the factor i in this and subsequent equations of the 
Appendix is associated with circular polarization of 
the incident wave. )· 

We note that for the magnetization M we obtain 
from (4a) 

1 ~ zT8 P00c£(0) { y--, 
M (z) = 2~ ~ e-ikzM (k) dk = -i wa V exp - za x J. 

_ 00 eff• x eff• 

(Sa) 

(b) We shall now show that the conditions for 
electron reflection from the metal boundary affect 
only the numerical coefficient in the magnetization 
(assuming that the electron spin does not change 
in collisions with the surface). For this purpose 
it is sufficient to obtain a solution of (2a) when 
q = 0 and to compare this solution with (Sa). Solv
ing (2a) and averaging the solution over the Fermi 
surface, we obtain for M the integral equation 

00 

M (z) = K (z) M (0) + ~ R (z- C) {M (q + i;J0 Q 0B1 (C)} dC, 

where 
00 co 

1\ { zx}dx 1\ { zx}dx K (z) = 2 . ~ exp - -.- -x•, R (z) = 2I j exp --. x. 
1 10 01 10 

Following Fock, 7 the solution of this equation can 
be written as 

M (z) = M (0) J2 (z) + J1 (z), (lb) 

b+ico ico 
1 \ ( dx 

! 1 (z) = (2rt)' .) ekz,h (k) dk j h (x) G (x) L (x) x-li., 
b-ioo -ioo ( 2b) 

b+ioo ioo 

J 2 (z) = (2~)2 ~ ekz<ltdk) dk ~ <ltdx) N (x) x~k, Reb> 0. 
b-ioo -ioo 

(3b) 

Here 
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. k 
00~ dx ( t~ Inw1 ,k) = -- --In 1--

' 1t x2+k2 t0 

tan"1 l~x) 
l • ' 

0 
ox 

h(k) =·h(-k), 

00~ t~ 1 1 + l~k L (k) = e-kz R (z) dz = -- In---;;-
to 2l~k 1 - l~k ' 

-00 

00 

a (k) = ixJoD.0 ~ e-~<zB1 (z)dz, 
0 

~ t" l~k + In (1 + l~k) 
N (k) = ~ e-kzK (z) dz = T 1~2k2 

0 

The functions ¢2 ( k) and ¢1 ( k) have simple 
poles at the points 

k = k0 = (1/l~) V 3t0x/Tsp= V~oerr and k =- ko 

respectively. We shall now obtain the magnetiza
tion M. For calculation of the integrals in (1b) it 
is convenient to expand ¢1 ( k) in a series with 
respect to € = ( t 0/Tsp )( 1 + iTsp~w) ( € « 1, 
when t0 I ~w I « 1 ). We now have 

_oo 
V3e \ dx ( tanx"1 X ) In ljl1 (k0) = ---;;- j x•+ 3e In 1 + z - ---'--

o 
- 00 

- V 3e In .!.2... r ___:!!___ 
n t" j x'+ 3e · 

0 0 

By adding and subtracting the integral 

vaef dx ( X2 ) ---;;- j x•+ 3e In e + 3 = In 2 V s, 
0 

we obtain 

_oo 

+ V3e\ ~In e+x•;3 +__!__ln(1 +s). 
n ) x2+ 3e 1 + e - x-1 ·tan-~ X 2 

0 

It can be shown that 

00 

3 (' dx ( 5 1 1 / 3 1 1 x2/3 ) + 6 ) X2 6-X"- 1-.rltan·•x-X2nt-x-1,tan·•x 
0 

(3 ),1 159n + 
- s '1120 ... 

By numerical integration we find that 

( 1J < 10-4 ; the requirement for resonance leads to 
1J = 0 ) . Thus, confining ourselves to terms of the 
expansion which are of the order of €, 

V- 2 v- 11 
In <jl1 (k0) = -In 2 e + Vs e- 20 E 

( 1 1 17J."E) 
=In 2Ve+V3-40" · (5b) 

It can be shown similarly that for small k 

Jn<jl1 (k)=- ln[V~(1+ :JJ 
+k(}-fa V3e) + ~ signk 

=In {:e [I + k (}- io V3e ) +-;-sign k] ( 1 + :. rll. 
(6b) 

We shall now calculate the integrals J 1 ( z) and 
J 2 ( z ). We apply the residue theorem to the inner 
integr3.1. in (2b). The integrand possesses poles in 
the right half plane at the points x = k and x = k0 

because of the functions 1/ ( x- k) and ¢2 ( x). The 
function G ( x) has poles only in the left half plane. 
The "distant" pole x = l/l6 of L ( x) can be neg
lected since 1/Zti » k. Then 

b+ioo 

JI(z) = ;n ~ ekz<ji1 (k) dk 
b-ioo 

The residue theorem can also be applied to this 
integral. G(k) has a pole at k = -1/o and 1/Jdk) 
has a pole at k = - k0• If o « 1/l ko I = Oeffii-IK I 
the pole at G ( k) like that of L ( k) can be neg
lected. Noting that L ( ko) = L (- k0 ) r::::~ 1, we 
obtain 

JI(z) = e-k,z{l\l2(-k0)a(-ko) 

+ 2~ a (k0) Res l\l2 (k0)} Res h ( -k0). 
0 

Hence, using (5b) and (6b) and retaining only zero 
order terms in (5), we obtain 

J 1 (z) = 2a (0) e-~<,z, a (0) = -ixt0D.ocE(O)jcul0 • (7b) 

Similarly 

( 211v-) J2 (z) = 1- 240 3s e-k,z. (8b) 

From (1b), (7b) and (8b) we have 

160 ixT sp 0 0cE (0) { i V:it} 
M (z) = - 211 a y-- exp - -o- ' 

c.> eff• x eff· 

which agrees with (8a) except for the coefficient. 
Thus the coefficient A in (3) equals unity for spec
ular reflection of electrons from a metal boundary, 
while A = 160/211 for diffuse reflection. 
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