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A general form has been derived for a wave function which is an eigenfunction of s2 and Sz 
and satisfies the Pauli principle. An expression is given for the Schrodinger wave function of 
the system constructed from one-electron functions. 

1. INTRODUCTION 

IN many problems in the quantum mechanics of 
many-electron systems one can in first approxi
mation neglect the spin dependence of the Hamil
tonian. Then the determination of the wave function 
consists in the approximate solution of the Schrod
inger equation containing only spatial coordinates. 
However, the symmetry properties of the Schrod
inger wave function depend on the total spin of the 
system. Fock1 derived the symmetry conditions 
which the Schrodinger wave function has to satisfy 
in order for the total wave function of the system 
to be an eigenfunction of s2 ( s is the total spin 
operator) and to satisfy the Pauli principle. Fock 
showed that these conditions are satisfied by a 
product of determinants consisting of one-electron 
functions, if the same coordinate function is taken 
for every pair of electrons with opposite spins. 
However, there exist methods of solving the Schrod
inger equation which do not introduce only one
electron functions (the method of partial separa
tion of variables, the adiabatic method, etc.). On 
the other hand, even in the approximation that uses 
one-electron functions we cannot use the simple 
product of determinants in those cases when two 
electrons with opposite spins are known to be in 
different states (e.g., the case of the singlets of 
the alkaline-earth elements ) . 

In these cases it is often difficult to construct 
from the approximate solution of the Schrodinger 
equation a Schrodinger function which satisfies the 
Fock conditions, or a total wave function of the 
system. The method of the Young scheme2 and 
the method of Abarenkov3 have the disadvantage 
that they do not give sufficiently convenient ex
pressions for the total and the Schrodinger wave 
function of the system. 

We shall show below that the Schrodinger and 
the total wave functions are most conveniently 
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constructed from a given approximate solution of 
the Schrodinger equation with the help of operators 
transforming an arbitrary function into an eigen
function of J 2 and Jz ( J is the spin, orbital, or 
total angular momentum of the system in units of 
n). We shall call them the characteristic opera
tors for J 2 and J z. 

2. THE CHARACTERISTIC OPERATORS FOR 
J2 AND Jz AND THEIR PROPERTIES 

We introduce the operator A~q• which oper
ates on the function g ( x1, ••• , Xn) according to 

21t 21t 1t 

Abqg = ~ d<p ~ dljl ~ sin&d&·ff,q(rp, &, 1)1) P<p,l>, .~g. (1) 
0 0 0 

Here X to • • • , Xn are the coordinates of the par
ticles of the system (both spin and spatial ) , 
P cp ,J.,IjJ is the rotation operator of the coordinate 
system given by the Eulerian angles cp, J., 1/J. It 
operates either on the spin or on the spatial coor
dinates, or on both, depending on the character of 
the angular momentum J. Also, 

fblf = (2..:)-2e'v"e'"'~Fb,I(&); 

F i Mab( . <J)b(. · ii'aaab &)· 
ptf ~~ n COS T \ l SIn 2 ) n (COS , 

G~b (x) = (-l)" (I - x)-a (I + x)-b ~ 
n! 211 dx" 

X (I _ x)a+n (I +x)h+n; 

Mab _ a+ b + 2n + 1. / n! (a+ b + n)! . 
n- 2 Jl (a-1-n)!(b-f-n)!' 

. . a-j-b 
1 ~ n + - 2- ; n = 0, I, 2 ... 

(2a) 

(2b) 

(2c) 

(2d) 

(2e) 

Each of the numbers p and q may thus take 
any value from - j to j in steps of unity,. G~b ( x) 
is the Jacobi polynomial.4 The functions fb,q are, 
up to a numerical factor, the matr'ix elements of 
the irreducible representation of the rotation 
group.5 In fact, 
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j -~ - :!j + l . j . f pttCr. &, ~) -- ilc.' lJ (P "· 9, <JJ)pq· 

We shall in the following assume that the func
tion g may be expanded into a series in terms of 
eigenfunctions of J 2 and Jz, corresponding to 
either only integer or only half odd-integer values 
j. Group theory5•6 yiel:ds the. following fundamental 
propert~ of the operators Ahq. 

If g~ is an eigenfunction of J 2 and J z with 
eigenvalues j' ( j' + 1) and m, respectively, then 

(3) 

From this we derive the following properties: 

12A i -- Ai J2 • ( • ' I) A i ' pcj -- pq = 1 1 -,-- Pq o 

JzAbq = pA~q. 

(4) 

(5) 

AbqJz = qAbq. (6) 

(Jx + iJ~) Jl~q ~= V (j + P) (j ± P + I) Ab±l, q, (7) 

Ahq(Jx ~!~ i.fu) = V (j + q)(j + q + 1) A~. q:q, (8) 

A Ai' = () .. ,()tt'Ai pi l'q II pq' (9) 

~Ab,, = 1, (10) 
j, p 

i+ j 
Apq == Aqp· (11) 

In the last formul~, Ab~ is the hermitian con
jugate operator to Apq· In formulas (3) to (11) the 
values j, j' can be either all integers, or all odd 
half-integers. 

If the Hamiltonian of the system H is invari
ant under the rotations P cpJ.lf;• then clearly 

(12) 

In this case the operators Abq have the following 
extremal property. Let gm be an approximate 
solution of the Schrodinger equation which is not 
an eigenfunction of J 2, but which is an eigenfunc
tion of Jz with eigenvalues m. We can construct 
new functions from gm by a rotation of the coor
dinate system. All functions obtained in this way 
give the same expectation value for the energy. 

We form 
27t 2" Tt' 

u = ~ dtp ~ d~~sin.&d&-f (tp, .&, ~) P'l'1l<!lgm 
(13) 

0 

and take f ( cp, J., 1/J) such that the functional 

I= (u, Hu) with the condition (u, u) = 1 (14) 

has an extremal value. For this purpose we ex
pand f ( cp, J., 1/J) in a series of the functions fbq: 

~ a~Ji;11 (•;>, &, ~). 
j, p, if 

from where we get 

u cc= "' ai Ai g . .L.J prn pm 1n 
j, Jl 

Taking abm as the variation param~ters and 
using the properties of the operators Ahm• we 
can easily show that the functional (14) has an ex
tremal value for the functions 

u i = A i <f I (A i (f g ) pm pmbm mrnbm' -· m ' (15) 

and the corresponding energy values are given by 
the expression 

Ejm = (A~mgm' H gm) / (Af..mgm, gm), (16) 

where, according to (22), j = I m I + n, n ;= 0, 1, 
2, . . . This property of the operators Ahq 
was recently used in the theory of the nucleus. 1 

3. THE SCHR()DINGER WAVE FUNCTION FOR 
THE MANY -ELECTRON SYSTEM 

In this section A~q denotes the characteristic 
operator for S2 and Sz. ( S is the vector of the 
spin angular momentum of the system of N elec
trons in units of ti). 

We introduce two functions of the z component 
of the spin of electron i (we call this component 
!cri): 

for -cr~ =- 1 0 for cr1 = -1 
111 = 0 for u; = 1 , Vi = 1 for Uf = I 

(17) 
We use the notation 

(18) 

This is an eigenfunction of Sz with eigenvalues 
s, if k = N/2 - s. 

An arbitrary function of the spin variables with 
a given value for the projection of the total spin can 
be expanded in terms of the functions ea1 ••• ak 
with various sets at. ... , ak. Hence, because of 
the properties of the operator A~q• an arbitrary 
function of the spin coordinates which is an eigen
function of S2 and Sz with eigenvalues s ( s + 1 ) 
and m, respectively, can be represented as a 
linear combination of functions Aihsea1 ••• ak· 

Let now >¥ ( rt. ... , rN) be an approximate solu
tion of the Schrodinger equation which is independ
ent of spin. The problem is now to use this solution 
in order to construct the total wave function for the 
system satisfying the Pauli principle and being an 
eigenfunction of S2 and Sz (we shall in the follow
ing call a function satisfying these three conditions, 
a "correct" function). It follows that the most gen
eral "correct" function which can be constructed 
from >¥ is an arbitrary linear combination of 
terms 

(19) 

with various sets a 1 ..• ak (A is the antisymmet-
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rization operator). We may take the numbers 
a 1 ... Cl!k to give the places in the function 'l1 cor
responding to a negative spin projection. Tl}.e re
maining places correspond to positive spin projec
tion. Thus the most general "correct" function 
derivable from 'l1 is an arbitrary linear combina
tion of expressions obtained from 

(20) 

by interchanging the numbers designating the 
places corresponding to the negative spin projec
tion in the function 'l!. 

We now consider the principal case, when lJ1 
is expressed as a product of one-electron functions: 

'f' (rl, ... , r.v) o= '¥1 (rl) '¥2 (r2)· · · 'f'N (rN)· (21) 

In this case the position number of the argument 
coincides with the number of the one-electron 
function. The first k functions in (20) correspond 
to negative spin projection; the remaining functions, 
to positive spin projection. Furthermore, hk = 
A'llt ( r1) ... 'llN ( rN) e1 ... k is simply the Slater 
determinant: 

" 

(22} 

We note that 

p<pl}<jJUi =~Vi+ ou,; P:;JJ.pV; = rxv; + '(U;, . 
where a, {3, y, o are the Cayley-Klein parameters: 

isin ~ e' ('P-<!>l I 2 )' ! . (23) 
cos-'- e-i <c;;+·J-> I 2 

2 

Using the properties of the operator A~q• we 
easily obtain 

As h w / (s + m)! (S ·s )s-mAs h 
ms k = V (s _ m)! (2s)! x - l y ss '" 

A;sh,. = ~ w~ •... ~ke~ •... ah' 
(a) 

where we sum over all possible sets a 1 ... O!k, 
and 

(24) 

(25) 

(26) 
UP ( ) • • ,') HP (', ) ' ' ,') UP ( ) ,') UP ( ) ,') 
r kH r1 1 sm 2 ... r ~<+1 r,. t sm 2 r ~<+1 rk+1 cos 2 ... r ~<+1 rN cos2 

ms 2s + 1 (' ( & )2s . d 
""1, 2 ... 1< = - 2 - ~ cos 2 sm.& .& 

0 

4lg1 ... Cl!k differs from (26) in that cos ( J/2) 

appears in those elements of the determinant which 
stand at the intersection of the columns with num
bers a 1 ... Cl!k and the first k rows, and also in 
the elements remaining after these columns and 
rows are crossed out. All other elements contain 
i sin ( J/2 ). 

Formula (26) gives an expression for the Schrod
inger function corresponding to the "correct" func
tion (24) (by SchrOdinger function we mean the 
function of spatial coordinates which may be sub
stituted for the total wave function in the calculation 
of the matrix elements of symmetric, spin-inde
pendent operators). 

If the first k one-electron functions are linear 
combinations of the remaining N -k functions the 
right hand side of (26) reduces to the usual product 
of determinants. In the general case the right hand 
side of (26) may easily be written in the form of a 

linear combination of products of determinants, by 
expanding the determinant under the integral ac
cording to the minors constructed from the first 
k rows. 

We introduce a general formula for the result of 
operating on the Slater determinant with the oper
ator A~q: 

A~qhl = ~ <P~~q·'mea, ... am; l = ~ - q; 
(~) 

7t 

N 
m=T-p, 

(25a) 

<P~.':.~m = ~F~q(.&)Ll~, ... amsin .&d.&, (26a) 
0 

where F~q is given by (26), and A& 1 ... O!m is a 
determinant differing from the determinant in (26) 
only in that cos ( J/2) appears in the elements 
standing at the intersection of the columns with 
numbers a 1 ... O!m and the first l rows, and 
also in the elements remaining after these columns 
and rows are crossed out. The other elements con-
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tain i sin ( J/ 2 ) . ci> ~~~ •• am is the Schrodinger 
function for the "correct" function (25a). 

~qhz can also be expressed as a linear com
bination of Slater determinants ha 1 ••• am• which 
differ from hz only in that here the spin factors 
u appear in the elements of the rows with num
bers a 1 ••• am, while the elements of the remain
ing rows contain the spin factors v: 

As h - ""c•1a.h pq l - .L.J pq a, ... a.m' 
((1.) (27) 

where we sum over all sets a 1 ••• am. Here 

f --( a )P+q+2ta ( a )N-p-q-21a; 
C~qa. = ~ F~q (lit) cos 2 \i sin 2 sin !it t:k) 

ta is the number of common elements in the sets 
1, 2, ... , l and a1o ... , am; l and m are re
lated to p and q through (25a). A special case 
of the expansion (27) is formula (15) in Loewdin's 
paper.8 We note that his projection operators 
2l+1 ® are related to the operators A~q in the fol
lowing way: 

s 
(2s+l)c. _ "" As 

'0 - .L.J PP· 
p--s 

(29) 
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