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walls, then, Ui = 0 and N = 0, and also NRij = 0. 
Equations (1) to (3) are found to be in satisfac­

tory quantitative agreement with experiment.1 In 
this case the following approximate values are ob­
tained for the constants: a = 5; {3 = 0.16; y = 0.022. 

The approximate solution for the boundary layer 
can be obtained in the form of an expansion in pow­
ers of Ryy /R ( x is directed along the current and 
y along the normal to the wall). The first approxi­
mation gives the following dependencies: 

dUx 1 
Rxy --lfii ~ y , 

Rxy~a-y, 

For flow in the tube, 2Z = a, where a is the radius 
of the tube. 

These dependencies are confirmed by experiment. 
In particular, the logarithmic dependence for R3 is 
confirmed. 

1 J. Laufer, NACA Report 1174, 1954. A. A. 
Townsend, The Structure of Turbulent Shear Flow 
(Cambridge, 1956). 
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AN analysis of the experimental data on the levels 
of atomic nuclei indicates that a number of nuclei 
do not have an axis of symmetry. 1 Therefore it 
appears advisable to investigate the behavior of 
nucleons in a potential field without axial symme­
try. As an example of such a field we consider an 
infinitely deep potential well with vertical walls 
which has the shape of an ellipsoid with semi-axes 
axR0, ayR0, and azR0, where R0 is the radius of 
a sphere of equal volume. The problem of deter­
mining the nucleon states in such a potential well 
is reduced to the solution of the equation 

(2Mfl (p; + P!+ p;) ~~ (r) = E/J(; (r) (1) 

inside the ellipsoid with zero boundary conditions. 
By considering the deviations from spherical shape 
as being small we set 

a:;1 = 1 +A, a;l = 1 + ~. a;-1 = 1 + x, 

where K is related to A. and v by the condition 
that the volume remains the same. By going over 
in (1) to the variables 

and by restricting ourselves to quantities of the 
second order of smallness, we obtain 

[(2Mflp2 + V (r')] ~~ (r') = E,~ (r'), 

~(r') = 0 for r' = R0 , 

V (r') = (2Mf1 [(rt2 + 1fa'02) p2 

+ (ct _ a/4"'2 _1j12o2) (p2- 3p;,) + 0 (1 + 1ftrt) (p;,- p~r)], 

ct =A+~. o =A-~. 
We regard V ( r') as a perturbation. The wave 

functions of the unperturbed problem (up to the 
normalization factor ) and the corresponding eigen­
values are equal to 

~~ (r'f = ~nlm (r') = r'-'''h+•Jd(J.nl+'l,r' /R0)Y lm (6' tp'), 

E~ E~ 1 = 1i 2(J.~l+'l.f2MRg, 
where J.l.nZ+! is the n-th root of the Bessel function 
jz+! ( z ), and Yzm is a spherical harmonic. 

Already in the first order of perturbation theory 
the degeneracy with respect to m is completely 
removed. Calculations carried out up to second­
order perturbation theory inclusive lead to quite 
awkward expressions for the energies, which in 
the case 0 = 0 (axial symmetry) reduce to the 
corresponding expressions given by Moszkowski2 

(when o = 0, his parameter d is related to the 
parameter a by the expression d =a+ a 2/4). 
Qualitatively the behavior of the nucleon levels can 
be studied as with the s and p shells as examples. 
In the case of s nucleons we obtain 

Eno c= E~o{ 1 + [ 1 - 1 ~~ s2((J.n•rJ] ( rt2 +} o2 )}· (2) 

and the p level splits up into three: 

Eo r 4 • [ s 432 ( ) ] (En1 h = n1 l1- 5 oc + oc· 5 --7- s3 (J.n•J, 

+ o2 [ i - ~ Sa (fLn•j, ) ]} , 

0 {' 2 2 2 [ 7 288 J (En1 h =Em 1 + 5 oc- so+ oc TO- -7- Sa ((J.n•t,) 

+ o2 [~- ~Ji Sa (fLn•0]- oco [ i- -~Sa ((J.n•j,) ]} , 

(En1 )a= E~1 { 1 +} oc + i o+ oc2 [~- 2~~ Sa (fLn•J,)] 

+ o2 [~- 1; 8 Sa (fLn'/,) 1 + oco [ {-- ~ Sa (fLn•J,) ]} ' 
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21+7 [L~l+'l• 
8 (21 + 3)3 • 16 (21 + 3) 2 

(3) 

The wave-functions corresponding to these states 
are given in zeroth approximation (up to the nor­
malization factor) by 

(~nl h = 'fnlO' (~nl )2 = 'fnu + ~nl-1• (~nl )a= ~nh- 'fn1-1• 

From (2) and (3) it may be easily seen that for 
a filled shell the spherical shape is energetically 
the most favorable one. As the p shell is gradu­
ally filled the equilibrium shape, starting with the 
third nucleon, will deviate not only from the spher­
ical one but also from the axially-symmetric one. 
For example, for the ( 1s )2 ( 1p )4 configuration, 
in which the levels E10, ( E11 h and ( E11 h are 
filled, the minimum total energy is at a ~ 0.015 
and o ~ 6.3. 

A detailed analysis of the deviations of the 
equilibrium shape of actual nuclei from axial 
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SPIN-SPIN absorption i.n parallel fields, X"'( H11 ), 
decreases monotonically with increase of the con­
stant magnetic field H11 .1- 5 The experimental 
curves of X" ( H II) that have been obtained are 
described by the theory of Shaposhnikov. 6 

In a number of cases,7- 9 the spin-spin absorp­
tion curves of hydrated salts of elements of the 
iron group have a maximum in x"(HII), depend­
ent both on the frequency of the alternating field 
Hv and on the intensity of H11. Gorter and de 
Vrijer7 suggested that the maximum in the spin­
spin absorption curve in chromium-potassium 
alums at 20°K is due to relaxation between two 
spin systems ( second relaxation in the spin 
system). 

Conditions for production of second relaxation 
are created also as a result of nonuniform heating 

symmetry will be published later. 
Similar calculations for the oscillator potential 

have been made by Garskii ( cf. Wilets and Jean3 ) 

and Geilikman4• · 

The author expresses his thanks to A. S. Davy­
dov for discussing the results of this work. 

1 A. S. Davydov and G. V. Filippov, J. Exptl. 
Theoret. Phys. (U.S.S.R.) 35, 440 (1958), Soviet 
Phys. JETP 8, 303 (this issue). 

2 S. A. Moszkowski, Phys. Rev. 99, 803 (1955). 
3 L. Wilets and M. Jean, Phys. Rev. 102, 788 

(1956). 
4 B. T. Geilikman, J. Exptl. Theoret. Phys. 

(U.S.S.R.) 35, 989 (1958), Soviet Phys. JETP 8, 
(in press). 
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(or ventilation) of certain hydrated salts of Mn++ 
Fe+++, and cu++. In such slightly hydrous salts, 
the ions in different elementary cells have differ­
ent environments, and this leads to production of 
second relaxation in the spin system. Similar 
conditions should be present likewise in sub­
stances with residual antiferromagnetism. 

x" 
x" 

O'------H11 
a b 

Double absorption curves X" (arbitrary units) in FeNH4 

(S04 ) 2 • H20; 11 = 296 Me/sec, T = 300°K. a- absorption in 
parallel fields; b- absorption in perpendicular fields. 

Actually, in Mn(COCH3h, FeNH4(S04)2 · H20, 
Fe2(S04)a • 3H20, and CuCl2, in the frequency 
range 600 to 150 megacycle/sec, by the method 
described earlier,10 we have succeeded in obtain­
ing curves of the absorption in parallel fields with 
a maximum in x"( H11 ). In these substances the 
position of the maximum is independent of temper­
ature* (in the range 300 to 90°K); on decrease of 
the frequency v, it moves toward lower magnetic 
fields H11 (cf. table). 

In the magnetically concentrated salts listed 


