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A closed system of differential equations, which 
describe statistically the turbulent flow of a liquid, 
can be obtained only by limiting the number of vari
ables that characterize the motion of the liquid. 
The appropriate variables to take here are the 
mean velocity Ui = ui at a given point, and the 
mean pressure P = p, and also the (one-sided) 
second moments of the fluctuating velocity Rij = 
ViVj, and the turbulent viscosity N. 

The equations for Ui are obtained from the 
usual averaging of the equations of hydrodynamics: 

(1) 

In the averaging of the equation for ViVj, ob
tained from the Navier-Stokes equation, there ap
pear third moments of the fluctuating velocity 
ViVjVk, and also moments that contain derivatives 
with respect to the coordinates. All these moments 
can be expressed phenomenologically, in first ap
proximation, in terms of the variables enumerated 
above and their derivatives. The requirements of 
dimensionality, tensor invariance, and parity must 
be satisfied here. If tensor combinations are 
chosen and known experimental data1 are followed, 
then a quasi-diffusion equation is obtained for Rij: 

( iJN iJN iJN )] 
- rx.R O;j iJxk + Ojk OX; + oki axj (2) 

+ ~ (!__NoR - '9!:_ R oN) + ~- (!__ N ?3__ - ~ R oN ) 
OX; 3 iJxj 2 iJxj axj 3 OX; 2 OX; 

au1 au; 13 ( a;1 2 ) aif yR2 _ 
+R;~tax~~. +Ri~t axk +N R;~tRitt-3R~tz +3~-0. 

Here R = Rkk. The physical meaning of the sepa
rate terms is as follows: the second term is con
nected with the transfer of turbulence energy 
(viVjVk is contained in the square brackets); this 
transfer is directed, as is well known, from the 
walls to the middle of the flow. The maximum of 
R on the boundary between the turbulent boundary 
layer and the laminar underlayer serves as the 
source. The third and fourth terms take into ac
count the transfer of energy by the fluctuating 
pressure; it proceeds in the opposite direction 
and partially cancels the second term. In summa
tion, all these terms give: 

- 8__;1_ _E__ (N i}R) + OCOij _E__ ( R iJN) 
3 ax~~. iJxk axk axk 

Further, the increase of the turbulent energy de
rives from the gradient of the mean velocity; it is 
obtained directly from the Navier-Stokes equation. 
The next-to-last term of the equation describes 
the shift of the anisotropy of the turbulence due to 
the scattering of the fluctuating velocity on the 
fluctuating pressure; finally, the last term repre
sents the viscous dissipation of energy in fine
grained turbulence. The dimensional universal 
constants a, {3, and y must be determined by 
experiment. 

With regard to the turbulent viscosity, in first 
approximation, for each given flow, we must set 
N = const everywhere, with the exception of the 
boundary layer. In the turbulent boundary layer, 
N falls off with approach to the wall. In this case, 
however, there is an added condition: the diverg
ence of the total flow of turbulent energy is prac
tically equal to zero: 

(3) 

This also gives the lacking equation for the deter
mination of the value of N in the boundary layer. 

As a condition for joining the solution of the 
equation for the two regions [the middle part of 
the flow ( N = const) and the boundary layer -
condition (3)] we use the requirement of continuity 
of all functions and their first derivatives. On the 
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walls, then, Ui = 0 and N = 0, and also NRij = 0. 
Equations (1) to (3) are found to be in satisfac

tory quantitative agreement with experiment.1 In 
this case the following approximate values are ob
tained for the constants: a = 5; {3 = 0.16; y = 0.022. 

The approximate solution for the boundary layer 
can be obtained in the form of an expansion in pow
ers of Ryy /R ( x is directed along the current and 
y along the normal to the wall). The first approxi
mation gives the following dependencies: 

dUx 1 
Rxy --lfii ~ y , 

Rxy~a-y, 

For flow in the tube, 2Z = a, where a is the radius 
of the tube. 

These dependencies are confirmed by experiment. 
In particular, the logarithmic dependence for R3 is 
confirmed. 

1 J. Laufer, NACA Report 1174, 1954. A. A. 
Townsend, The Structure of Turbulent Shear Flow 
(Cambridge, 1956). 
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AN analysis of the experimental data on the levels 
of atomic nuclei indicates that a number of nuclei 
do not have an axis of symmetry. 1 Therefore it 
appears advisable to investigate the behavior of 
nucleons in a potential field without axial symme
try. As an example of such a field we consider an 
infinitely deep potential well with vertical walls 
which has the shape of an ellipsoid with semi-axes 
axR0, ayR0, and azR0, where R0 is the radius of 
a sphere of equal volume. The problem of deter
mining the nucleon states in such a potential well 
is reduced to the solution of the equation 

(2Mfl (p; + P!+ p;) ~~ (r) = E/J(; (r) (1) 

inside the ellipsoid with zero boundary conditions. 
By considering the deviations from spherical shape 
as being small we set 

a:;1 = 1 +A, a;l = 1 + ~. a;-1 = 1 + x, 

where K is related to A. and v by the condition 
that the volume remains the same. By going over 
in (1) to the variables 

and by restricting ourselves to quantities of the 
second order of smallness, we obtain 

[(2Mflp2 + V (r')] ~~ (r') = E,~ (r'), 

~(r') = 0 for r' = R0 , 

V (r') = (2Mf1 [(rt2 + 1fa'02) p2 

+ (ct _ a/4"'2 _1j12o2) (p2- 3p;,) + 0 (1 + 1ftrt) (p;,- p~r)], 

ct =A+~. o =A-~. 
We regard V ( r') as a perturbation. The wave 

functions of the unperturbed problem (up to the 
normalization factor ) and the corresponding eigen
values are equal to 

~~ (r'f = ~nlm (r') = r'-'''h+•Jd(J.nl+'l,r' /R0)Y lm (6' tp'), 

E~ E~ 1 = 1i 2(J.~l+'l.f2MRg, 
where J.l.nZ+! is the n-th root of the Bessel function 
jz+! ( z ), and Yzm is a spherical harmonic. 

Already in the first order of perturbation theory 
the degeneracy with respect to m is completely 
removed. Calculations carried out up to second
order perturbation theory inclusive lead to quite 
awkward expressions for the energies, which in 
the case 0 = 0 (axial symmetry) reduce to the 
corresponding expressions given by Moszkowski2 

(when o = 0, his parameter d is related to the 
parameter a by the expression d =a+ a 2/4). 
Qualitatively the behavior of the nucleon levels can 
be studied as with the s and p shells as examples. 
In the case of s nucleons we obtain 

Eno c= E~o{ 1 + [ 1 - 1 ~~ s2((J.n•rJ] ( rt2 +} o2 )}· (2) 

and the p level splits up into three: 

Eo r 4 • [ s 432 ( ) ] (En1 h = n1 l1- 5 oc + oc· 5 --7- s3 (J.n•J, 

+ o2 [ i - ~ Sa (fLn•j, ) ]} , 

0 {' 2 2 2 [ 7 288 J (En1 h =Em 1 + 5 oc- so+ oc TO- -7- Sa ((J.n•t,) 

+ o2 [~- ~Ji Sa (fLn•0]- oco [ i- -~Sa ((J.n•j,) ]} , 

(En1 )a= E~1 { 1 +} oc + i o+ oc2 [~- 2~~ Sa (fLn•J,)] 

+ o2 [~- 1; 8 Sa (fLn'/,) 1 + oco [ {-- ~ Sa (fLn•J,) ]} ' 


