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a b 

(a) unperturbed distribution (all states inside occupied). 
(b) perturbed distribution; in regions 1, 8n = - 1, in regions 
2, 8n = 1; inside the solid line all states are occupied. 

Let us expand the momentum p corresponding 
to the solid line of diagram b in a series of spher­
ical surface harmonics: 

P=Po+~<I>zmYzm(6,tp), .Yzo(O)=I. (2) 
lm 

The first term in Eq. (1) takes the following 
form: 

2 2 p-p, 2 
VoPo\ \ , , PoVo ~ 2 47t (I+ m)! 

(27t1i.)" J do J (p - Po)dp = (27t1l)" f:;; <I> z m 2T+T (I:._ m)! 

0 (3) 

The potential energy reduces to the expression 

2p~j(21tttt 6~ ~ [p (61,<p1)- Pol [p (62, "fi2)- Pol do1dod (012), 

(4) 
cos 612 =cos 61 cos 62 +sin 61 sin 62 cos ('?1- '?.) . 

• 
We now expand f ( e12 ) in a series of surface 

harmonics: 

l 

f (612) = ~ fzPz (cos 61z) 
I 

"\1 ~ y (6 ) y o (1- m')! 
= .4..J.Li lm' 1>'?1 Zm•(u2,"fi2) (l+m')! fz, 

l m' 

21 + 1 \ fz = ~ J f (6) Pz (cos 6) do, 

Substituting Eq. (5) into (4) and combining with . 
Eq. (3), we get the total energy functional 

2 
,:: _ PoVo ~ <I>• . 47t (I + m)! 
~ - (27t1l)" lrr. 21 + 1 tl- m)! 

2p~ "" 2 ( 47t )2 (l + m)! + (27t1l)6 f,;; <I> lm 21 + 1 f 1 (I- m)! · 

(5) 

(6) 

The conditions for stability are written separ­
ately for each l, m: 

2p~ ~ 1 + (2 ")" fPz (cos 6)do>O. 
Vo 1tn (7) 

For l = 0 and l = 1 these conditions agree 
with the conditions (11) and (18) of reference 1, 
where they characterized the positiveness of the 
square of the speed of sound and of the effective 
mass. 

So far we have supposed that f ( p, p') does not 
depend on the mutual orientation of the spins of the 
excitations. If we take into account this dependence, 

then instead of f we have the function 

f (pp') + (a1a2) g (P1P2)· (8) 

The perturbation of the Fermi surface is now 
expressed by the formula 

lm 

(9) 

instead of Eq. (2). Since E involves the trace with 
respect to a and a', we get instead of Eq. (6): 

P~Vo ;1 2 47t (I+ m)! 
E = 2 (27t1l)9 ~ <I> lm 21 + 1 (I- m)! 

lm 

P~ ~ 2 (. 4,. ) 2 (I+ m)! 
+ 2 (27t1l)6 f,;; <I> lm 21 + 1 (1- m)l gz, (10) 

where gz are the expansion coefficients of the 
function g ( p1p2 ) = g ( cos e 12 ) (all taken from the 
Fermi surface) in a series of Legendre polynomi­
als: 

g (cos 612) = ~ gzPz (cos 612). 
l 

(11) 

The stability conditions following from Eq. (10) 
have the form 

p• " 
1 + vo(Z~1l)" ~ g (cos 6) Pz (cos 6) do> 0. (12) 

For l = 0 this condition means the absence of 
ferromagnetism and is contained in the condition 
x > 0 ( Eq. (26) of reference 1 ) . 

In conclusion I express my gratitude to L. D. 
Landau for a discussion of this note. 
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REFERENCES 1 and 2 contained a statement 
about the absence of damping of betatron oscilla­
tions, which is connected with the emission of 
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radiation in an electron accelerator. We show 
here that, in actual fact, both the normal adiabatic 
damping and the damping connected with emission 
of radiation occur when the beam is straightened 
when passing through the accelerating gaps. 

Let an arbitrary number of accelerating gaps 
be distributed along the length of the accelerator 
ring. When a particle passes through a section 
with a uniform electric field directed along the 
ideal unperturbed equilibrium trajectory, the com­
ponents of its momentum on the transverse axes 
Pz = Ec-2 dz/dt and Pr = Ec-2 dr/dt remain con­
stant, where E is the total energy of the particle. 
Therefore z and r experience a jump ~z = 

- ezU/E, ~r = - erU/E, where U is the potential 
difference passed through by the particle, eU/E 
« 1. Assuming the accelerating sections to be 
sufficiently short, one may assume ~z = ~r = 0. 
This consideration is not essential, but it corre­
sponds to the usual condition of acceleration in a 
synchroton. The action of the gap is thus described 
by the matrix 

II=(6 1-e3;E), Z1=llzo, z=(dzj~t) (1) 

with the determinant I Ilik I = 1-eU/E. Outside 
the accelerating gaps the transition from the point 
x1 = vt1 to the point x2 = vt2 is described for free 
oscillations by a matrix M with determinant 
I Mik I = 1. If in a time ~t the particle passes n 
times through an accelerating gap, then 

z (t + M) = Mniin . .. M2II2M1II1z (t). 

The determinant of the product of matrices is 

_ ( eU1·, ( eU 2\ ( eU n) ! MniTn •. . MIII1!- 1-£;) \1- -£--;_) ... , 1- £;, 

edUjdt eUk _ (2) 
~ 1-E(i)M, E~ I, 

where dU/dt is the potential difference passed 
through by the particle in unit time. It is well 
known that the determinant of the matrix of the 
transition from t to t + ~t is equal to the ratio 
of the phase volumes. From expression (2) it is 
clear that the phase volume for the variables z, z 
or r' r is decreased for each passage through an 
accelerating gap. From (2) it follows that the free 
transverse oscillations ar~ damped according to 
the relation 

t 

{ 1\edUjdt } z ~ exp - 2 ~ E(lf dt . (3) 
0 

In an electron accelerator we have e dU/dt = 
• - -r 
E + Py, where ~ is the average energy increment 
of the particle, Py the average power spent in com­
pensating for the radiation losses. In a proton ac-

celerator Py = 0 and Eq. (3) gives (taking the 
change of frequency into account) for the oscilla­
tion amplitude A(t)/A(O) = (p(O)/p(t))i/2• 

The clearcut considerations given here confirm 
the correctness of the equations for the vertical 
and radial oscillations for an electron accelerator 
obtained by Kolomenskii. 3 

The damping mechanism just described does 
not pertain to forced radial-phase oscillations. 
The mechanism of damping of synchrotron oscil­
lations is essentially different. In particular, 
radiation leads directly to the damping of phase 
oscillations, .thanks to the fact that the radiation 
intensity is proportional to E2• If the particle 
energy is increased by an amount oE, the aver-
age radiation power is also increased by an amount 
2PyoE/E so that the phase oscillations are damped 
according to the rule 

t -

cp ~ exp {- ~ ~Y dt} , 
0 

in agreement with the equations obtained in refer­
ences 3 and 4. 

The presence of a connection between radial and 
phase oscillations which shows up on the one hand 
in the fact that Py is proportional to H2, H = H ( r ), 
and on the other hand in the appearance of a term 
op/p ~ d<p/dt in the equation for the radial oscilla­
tions, leads to a redistribution of the damping de­
crements while their sum remains equal to its 
original value.3- 5 In the usual accelerator with 
fixed focusing, the radial-phase connection leads 
to unstable radial oscillations. 3 The most conve­
nient method to damp the radial oscillations is, 
apparently, the variation of the magnetic field 
along the orbit. 5 

The fact that the energy loss by radiation does 
not directly influence the velocity of damping of 
the free transverse oscillations (as follows, in 
particular, from reference 6) is connected with 
the fact that the radiation is directed on the aver­
age along the motion of the particle so that the 
particle receives at the moment of emission a 
transverse recoil momentum proportional to 
dz/dx: c~p2 = - Edz/dx, where E is the energy 
of the quantum. Hence ~ ( Edz/dx) = - Edz/dx, 
x = ct, which gives ( ~dz/dx )rad = 0, while at 
the same time we have for the passage through 
an accelerating gap ~dz/dx = - ( eU/E) dz/dx. 
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A closed system of differential equations, which 
describe statistically the turbulent flow of a liquid, 
can be obtained only by limiting the number of vari­
ables that characterize the motion of the liquid. 
The appropriate variables to take here are the 
mean velocity Ui = ui at a given point, and the 
mean pressure P = p, and also the (one-sided) 
second moments of the fluctuating velocity Rij = 
ViVj, and the turbulent viscosity N. 

The equations for Ui are obtained from the 
usual averaging of the equations of hydrodynamics: 

(1) 

In the averaging of the equation for ViVj, ob­
tained from the Navier-Stokes equation, there ap­
pear third moments of the fluctuating velocity 
ViVjVk, and also moments that contain derivatives 
with respect to the coordinates. All these moments 
can be expressed phenomenologically, in first ap­
proximation, in terms of the variables enumerated 
above and their derivatives. The requirements of 
dimensionality, tensor invariance, and parity must 
be satisfied here. If tensor combinations are 
chosen and known experimental data1 are followed, 
then a quasi-diffusion equation is obtained for Rij: 

( iJN iJN iJN )] 
- rx.R O;j iJxk + Ojk OX; + oki axj (2) 

+ ~ (!__NoR - '9!:_ R oN) + ~- (!__ N ?3__ - ~ R oN ) 
OX; 3 iJxj 2 iJxj axj 3 OX; 2 OX; 

au1 au; 13 ( a;1 2 ) aif yR2 _ 
+R;~tax~~. +Ri~t axk +N R;~tRitt-3R~tz +3~-0. 

Here R = Rkk. The physical meaning of the sepa­
rate terms is as follows: the second term is con­
nected with the transfer of turbulence energy 
(viVjVk is contained in the square brackets); this 
transfer is directed, as is well known, from the 
walls to the middle of the flow. The maximum of 
R on the boundary between the turbulent boundary 
layer and the laminar underlayer serves as the 
source. The third and fourth terms take into ac­
count the transfer of energy by the fluctuating 
pressure; it proceeds in the opposite direction 
and partially cancels the second term. In summa­
tion, all these terms give: 

- 8__;1_ _E__ (N i}R) + OCOij _E__ ( R iJN) 
3 ax~~. iJxk axk axk 

Further, the increase of the turbulent energy de­
rives from the gradient of the mean velocity; it is 
obtained directly from the Navier-Stokes equation. 
The next-to-last term of the equation describes 
the shift of the anisotropy of the turbulence due to 
the scattering of the fluctuating velocity on the 
fluctuating pressure; finally, the last term repre­
sents the viscous dissipation of energy in fine­
grained turbulence. The dimensional universal 
constants a, {3, and y must be determined by 
experiment. 

With regard to the turbulent viscosity, in first 
approximation, for each given flow, we must set 
N = const everywhere, with the exception of the 
boundary layer. In the turbulent boundary layer, 
N falls off with approach to the wall. In this case, 
however, there is an added condition: the diverg­
ence of the total flow of turbulent energy is prac­
tically equal to zero: 

(3) 

This also gives the lacking equation for the deter­
mination of the value of N in the boundary layer. 

As a condition for joining the solution of the 
equation for the two regions [the middle part of 
the flow ( N = const) and the boundary layer -
condition (3)] we use the requirement of continuity 
of all functions and their first derivatives. On the 


