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for the sake of convenience, put L = 1 or put L3 

equal to the volume of the elementary crystal cell. 
The meaning of Pz is then that it is the matrix 
element of the dipole moment per unit volume, or, 
respectively, of the elementary cell. Below we 
shall consider only excited states for which P >"' 0. 

The coefficients of the linear combination of 
the degenerate functions c z are determined from 
the condition that cB ( k) or the quantity I ( P • s) I 
is extremum under the supplementary condition 
"E I czl 2 = 1. 

If the excited state of the cube (cell) is non­
degenerate, the single coefficient c is equal to 1. 
This occurs for all excited states of a rhombic 
crystal and also, for instance, for those states of 
a tetragonal crystal for which Pz is directed along 
the tetragonal axis. Then a is the angle between 
the uniquely determined direction in the crystal 
P = pz and the direction s. Depending on the direc­
tion of s, cos2 a takes on all values from 0 to 1. 

Apart from the just mentioned states there are 
in a tetragonal crystal still two-fold degenerate 
excitations of the cube for which P lies in the 
plane perpendicular to the tetragonal axis, z. 
There are thus two sets of extremal values c1 

and c2 and correspondingly two exciton states 
for a given direction of s: 

(1) P 1 s, u = 0; (2) P coplanar with s and z, 

u = 4rrL -a! P J2sin2 (s,z). (7) 

In both cases I P I is unique and is independent of 
the direction of s. 

In cubic crystals there are two kinds of exciton 
for any given direction of s: 

(1) P 1 s and otherwise arbitrary in direction; 
u = 0, 

(2) P[Js and u=4rrL-3 JPJ 2 • (8) 

In both cases I PI is unique and is independent of 
the direction of s. 

The dependence of u ( k) on the direction of k 
as I k I ....... 0, just proven, means that the function 
cB ( k) has a discontinuity at k = 0. One must thus 
introduce the corresponding corrections in many 
earlier papers in which cB ( k) was expanded in a 
power series in kx, ky. kz, in particular in ref­
erence 2. However, for each given direction cB ( k) 
can be considered to be an analytical function of 
the absolute magnitude k and can be expanded in 
a power series in it. In this way one.obtains all 
basic results of reference 2, including Eqs. (39) 
to (44). One must only consider the parameter 
cB ( 0) to be a constant for a given direction of s, 
and generally speaking, a quantity depending on 
the angle between the direction of s and P ok ( 0 ) . 

The discontinuous dependence of the exciton 
energy on k of the above discussed type was 
earlier obtained for particular models for the 
exciton: for a Frenkel exciton in molecular crys­
tals ( naphthalene and anthracene ) 3 and for a plas­
mon in an anisotropic medium.4 
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IN the theory of the Fermi liquid proposed by 
Landau1•2 the energy of the system is a functional 
of the distribution of the excitations among the 
quantum states (in particular, among values of 
the momentum). When the distribution function 
of the excitations has only small deviations on 
from the equilibrium distribution corresponding 
to the filling up of all states with p < Po (all the 
notations are the same as in reference 1 ) , the 
energy functional E has the form 

(1) 
1 ~ "'\' \' ' ' d3pd3p' + 2 £.J LJ J J f (pp) on (p) on (p) (Zrrt)& 

a "' 

( a is the excitation spin). 
Stability will exist for small on if E > 0 for 

arbitrary on. The values of p actually involved 
in the integrals of Eq. (1) are those close to Po 
( the temperature is zero ) . Therefore € ( p ) = 
( d€/dp )p0( p -p0 ) = v0 ( p- Po). The variations 
on appearing in Eq. (1) are due to deformations 
of the Fermi surface, and we shall find the crite­
rion for stability with respect to such deformations 
(see diagram). 
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a b 

(a) unperturbed distribution (all states inside occupied). 
(b) perturbed distribution; in regions 1, 8n = - 1, in regions 
2, 8n = 1; inside the solid line all states are occupied. 

Let us expand the momentum p corresponding 
to the solid line of diagram b in a series of spher­
ical surface harmonics: 

P=Po+~<I>zmYzm(6,tp), .Yzo(O)=I. (2) 
lm 

The first term in Eq. (1) takes the following 
form: 

2 2 p-p, 2 
VoPo\ \ , , PoVo ~ 2 47t (I+ m)! 

(27t1i.)" J do J (p - Po)dp = (27t1l)" f:;; <I> z m 2T+T (I:._ m)! 

0 (3) 

The potential energy reduces to the expression 

2p~j(21tttt 6~ ~ [p (61,<p1)- Pol [p (62, "fi2)- Pol do1dod (012), 

(4) 
cos 612 =cos 61 cos 62 +sin 61 sin 62 cos ('?1- '?.) . 

• 
We now expand f ( e12 ) in a series of surface 

harmonics: 

l 

f (612) = ~ fzPz (cos 61z) 
I 

"\1 ~ y (6 ) y o (1- m')! 
= .4..J.Li lm' 1>'?1 Zm•(u2,"fi2) (l+m')! fz, 

l m' 

21 + 1 \ fz = ~ J f (6) Pz (cos 6) do, 

Substituting Eq. (5) into (4) and combining with . 
Eq. (3), we get the total energy functional 

2 
,:: _ PoVo ~ <I>• . 47t (I + m)! 
~ - (27t1l)" lrr. 21 + 1 tl- m)! 

2p~ "" 2 ( 47t )2 (l + m)! + (27t1l)6 f,;; <I> lm 21 + 1 f 1 (I- m)! · 

(5) 

(6) 

The conditions for stability are written separ­
ately for each l, m: 

2p~ ~ 1 + (2 ")" fPz (cos 6)do>O. 
Vo 1tn (7) 

For l = 0 and l = 1 these conditions agree 
with the conditions (11) and (18) of reference 1, 
where they characterized the positiveness of the 
square of the speed of sound and of the effective 
mass. 

So far we have supposed that f ( p, p') does not 
depend on the mutual orientation of the spins of the 
excitations. If we take into account this dependence, 

then instead of f we have the function 

f (pp') + (a1a2) g (P1P2)· (8) 

The perturbation of the Fermi surface is now 
expressed by the formula 

lm 

(9) 

instead of Eq. (2). Since E involves the trace with 
respect to a and a', we get instead of Eq. (6): 

P~Vo ;1 2 47t (I+ m)! 
E = 2 (27t1l)9 ~ <I> lm 21 + 1 (I- m)! 

lm 

P~ ~ 2 (. 4,. ) 2 (I+ m)! 
+ 2 (27t1l)6 f,;; <I> lm 21 + 1 (1- m)l gz, (10) 

where gz are the expansion coefficients of the 
function g ( p1p2 ) = g ( cos e 12 ) (all taken from the 
Fermi surface) in a series of Legendre polynomi­
als: 

g (cos 612) = ~ gzPz (cos 612). 
l 

(11) 

The stability conditions following from Eq. (10) 
have the form 

p• " 
1 + vo(Z~1l)" ~ g (cos 6) Pz (cos 6) do> 0. (12) 

For l = 0 this condition means the absence of 
ferromagnetism and is contained in the condition 
x > 0 ( Eq. (26) of reference 1 ) . 

In conclusion I express my gratitude to L. D. 
Landau for a discussion of this note. 
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REFERENCES 1 and 2 contained a statement 
about the absence of damping of betatron oscilla­
tions, which is connected with the emission of 


