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WHEN a stream of conducting gas passes through 
the front of a normal shock wave the following quan­
tities are conserved:1•2 

1 [ , [LH2( az'] 
iji p + pa- + &' 1 + (;2) = J; (1) 

(2) 

a/Vfi = m. (3) 

At the same time the following condition is also 
satisfied. 

HV = b = const. (4) 

Here p is the pressure, p the density, V the 
specific volume, a the velocity, e = -J 1- a2/ c2 , 
and H the intensity of the magnetic field ( H 1 a). 

On eliminating the quantity H from Eqs. (1) 
and (2) with the aid of (4), we arrive at the follow­
ing equations: 

[ 1 ( , 2 b0c')] O 
82 / I pa + 2V" = ; 

(5) 

[ 1 (' b c2)] T \pV + pVc2 + -t- = 0, (6) 

where 

bo = [Lb2 / 47:c2. 

For an ultrarelativistic gas we have 

p = (k- 1) pc2 ; pVk = ok, (7) 

where a is the entropy function. 
On elimimtting,from Eq. (6) the pressure and 

the specific volume we shall find that 

.C I k- 1 + " + --0 = O· [ 2o f a2 ) b m'] 
6· \ c· a2 ' 

r (kp b0m')] Ia 02+7 = 0· 

(8) 

Denoting the parameters of the gas ahead of the 
front by the subscript 1 and behind the front of the 
shock wave by the subscript 2, we obtain, on the 
basis of (8), the following equations: 

If we eliminate p2 from the system (9) we obtain 
a cubic equation for a2• This equation has, first, 
the trivial solution a1 = a2 = c which has a mean­
ing in the case of a photon gas whose equation of 
state is the same as for the case of the ultrarela­
tivistic gas. As is well known, no shock wave 
arises in this case. 

The resulting equations lead to the solution 

[32 = ~~ {k- 1 + IX2 + ((k- 1 + 0(2) 2 (10) 

+ 8~~ [1X2 - (k- 1)])"•}, 

where 

IX = -~ = ( k -1 + b0 I kp1V~ <'• 
c 1 + b0 1 kpNi ) . 

( Evidently the only meaningful solution is one 
with a plus sign in front of the square root). 
Analysis of this solution shows that if {3 1 =a, 
then also {32 = a. 

Further, it is evident that the condition {32 < {31 

yields the result: {31 > a; {32 < a. For {31 < a, 
no shock wave is formed. 

If the gas pressure is negligibly small in com­
parison with the field pressure (there is no gas ) , 
then a = 1, and since the condition 1 :=:::: {31 :=:::: a 
must be satisfied, {31 = {32 = 1 and, consequently, 
the shock wave can not be formed. 

If there is no field (H = 0; b = 0), a= (k-1)1/2 

and (10) leads to 

~1 ~2 = k- 1. (11) 

If {31 = ( k -1 )1/2, then {32 = ( k -1 )1/2 and there 
is no shock wave. As {31 increases, the amplitude 
of the shock wave also increases. 

In the system of reference in which the gas 
ahead of the wave front is at rest, and the speed 
of the wave front is D = at> the velocity of the 
gas behind the front of the shock wave will be 
given by 

(12) 

When {3 1 = 1, then {32 = k -1, but aH /c = 1. 
It is evident that a shock wave is impossible 

when the speed of gas flow behind its front is equal 
to the velocity of light for particles with a rest 
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mass different from zero, because such a speed is 
not attainable. 

It may turn out that for a given aH = afl the 
amplitude of the shock wave will be a maximum. 
In the case of a further increase in the speed aH, 
a part of the energy of the particles will be con­
verted into energy of radiation, pairs will begin 
to be created in the photon gas, and the amplitude 
of the shock wave will be reduced. 
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LET us divide the crystal into cubic regions, let 
the edge of the cube L contain a large number of 
lattice constants, and let the exciton quasi-momen­
tum k have an absolute magnitude much less than 
1/L. We construct the wave function of the crystal 
in the form of a linear combination of antisymme­
trized products of wave functions of the separate 
regions: 

N 

'I"k =A~ eik·m(-1)). II IJin(l-) C{flm (1-). (1) 
ml). n=l 

n+m 

Here n ( or m ) is a vector determining the posi­
tion of the center of the cube and at the same time 
an index, numbering the cube. 1/!n is the ( antisym­
metrized) ground state of the separate cube, Cflml 
an excited state of the cube, l numbers the degen­
erate excited states of the cube, and A is the num­
ber giving the distribution of the electrons over the 
cube. The distribution is numbered arbitrarily but 
in such a way that each subsequent distribution is 
obtained from the previous one by the interchange 

of two electrons belonging to different cubes. 
The exciton energy is evaluated from the wave 

function (1) in the same way as in the Heitler­
London-Heisenberg method (see reference 1, § 2, 
case b). The only difference is that the Heitler­
London-Heisenberg method involves the wave func­
tions of the elementary cells of the crystal, while 
here we have instead the wave functions of the 
above-mentioned cubes. We can neglect the ex­
change interaction energy for electrons belonging 
to different cubes. The energy is then equal to 

d)(k)=dJo+u(k), u(k)=~L(m)eikm, (2) 
m 

where dl 0 is a constant that does not depend on 
the quasi-momentum k, and 

L (m) = ~ c; Cz' ~ tp~ 1 (ro) 4~ (r m) V mo (r mro) 'Pml' (r m) 4o (ro) drodr m• 
ll' (3) 

Vmo is the potential energy of the Coulomb inter­
action between charged particles belonging to cubes 
at the points m and 0; rm and r 0 indicate the 
totality of the coordinates of these particles (for 
an arbitrary distribution A ) • Since the cubes are 
electrically neutral, Vmo can be reduced to their 
dipole-dipole interaction. Let P ( m ) and P ( 0 ) 
be the dipole moments of the cube. We introduce 
the notation 

Pz = ~ 'P~z (ro) P (0) 4o (ro) dro, P = ~ c; Pz. (4) 
l 

One can then easily show by expressing Vmo ex­
plicitly in terms of P ( m) and P ( 0 ), substitut­
ing the result into (3) and using the notation (4) 
that the quantity u (k) can be interpreted in the 
following way: u is equal to the electrostatic en­
ergy of the interaction of the dipole P at the ori­
gin with all dipoles P*ei(k·m) at the centers of 
all the cubes. Since kL « 1 one can replace the 
collection of dipoles placed at the centers of the 
cubes by a polarized co~tinuum with a specific 
dipole moment L - 3 P*e1(k•r). The laJ;ter produces, 
as is well-known, a fictitious dielectric polariza­
tion field which is equal to 

E' (r) = -4r.L-3s (P*,s) eikr, s = k/k. (5) 

In this way u can be evaluated as the energy of 
the interaction between the dipole P and the field 
E' ( 0): 

u = - P•E' (0) = 4r.L -al P·s 12 = 47tL -a 1 P 12 cos2ot, (6) 

where a is the angle between P and s. We 
can show that the quantity (6) does not depend on 
L, since P is proportional to L3/ 2• We· can thus, 


