¹⁰ K. Dalitz and F. Dyson, Phys. Rev. **99**, 301 (1955).

¹¹ R. Signell and R. Marshak, Phys. Rev. 106, 832 (1957).

Translated by R. Lipperheide 91

DEPOLARIZATION OF ELECTRONS DUE TO RADIATION IN A MAGNETIC FIELD

Iu. F. ORLOV and S. A. KHEIFETS

Physical Institute, Academy of Sciences, Armenian S.S.R.

Submitted to JETP editor April 10, 1958

J. Exptl. Theoret. Phys. (U.S.S.R.) 35, 513-514 (August, 1958)

LHE change in electron polarization (from initial longitudinal polarization) under rotation in a magnetic field may be utilized for the purpose of measuring the electron anomalous magnetic moment.¹ It is useful here to obtain the magnitude of depolarization due to the side effects of radiation in a magnetic field.

It is convenient, for the purpose of calculating the probability of radiation with spin flip in a uniform magnetic field H, to express the wave functions in the coordinates z, φ and y = eHr²/2:²

$$\begin{split} \psi^{(k)} &= D_k \left(2\epsilon s! \ n! \ 2\pi v^{i_3} \right)^{-i_2} L_s^p \ y^{p/2} \exp\left(-y \ / \ 2 + i l \varphi + i p_z \ z \right); \\ k &= 1, \ 2, \ 3, \ 4; \\ p &= l + \frac{1}{2} + (-1)^k \ / \ 2; \quad D_1 = A \ \sqrt{n (\epsilon + m)}; \\ D_2 &= i B \ \sqrt{\epsilon + m}, \\ D_3 &= \sqrt{n} \left(\sqrt{2eHn} \ B + P_z A \right) \ / \ \sqrt{\epsilon + m}; \\ D_4 &= i \left(\sqrt{2eHn} \ A - P_z B \right) \ / \ \sqrt{\epsilon + m}; \\ \epsilon &= \sqrt{m^2 + P_z^2 + 2eHn}. \end{split}$$

Here ϵ stands for the total electron energy $(\hbar = c = 1)$, s = n - l - 1; v is the normalization volume and $L_{S}^{p}(y)$ is the associated Laguerre polynomial as defined in reference 3. The constants A and B specify the spin state, $|A|^{2} + |B|^{2} = 1$.

For the intensity of the transition from n, s = 0, A = 1, 0 to $n' = n - \nu$, s' = 0, A' = 0, 1 we find ($P_z = 0$ in the initial state):

$$dI_{10}^{\nu} = \frac{1}{2\pi} \left(\frac{\beta^2 \nu^2 e^2 H}{4n\varepsilon} \right)^2 \left\{ \left(\frac{\varepsilon \beta \sin \theta}{\varepsilon + m} J_{\nu} - J_{\nu-1} \right)^2 + \cos^2 \theta J_{\nu-1}^2 \right\}; \quad (1)$$

$$dI_{01}^{\nu} = \frac{1}{2\pi} \left(\frac{\beta^{2\nu^{2}} e^{2H}}{4n\varepsilon} \right)^{2} \left\{ \left(\frac{\varepsilon\beta\sin\theta}{\varepsilon+m} J_{\nu} - J_{\nu+1} \right)^{2} + \cos^{2}\theta J_{\nu+1}^{2} \right\}, \quad (2)$$

where $J_n = J_n(n\beta\sin\theta)$ is a Bessel function, $\beta = v/c$, and θ is the angle between the z axis and the direction of the wave vector of the emitted photon. Transitions in which the quantum number s changes do not contribute significantly to the total transition probability for the process n, A = 1, $0 \rightarrow n' = n - \nu$, A' = 0, 1. For $\overline{\nu}^2/n \ll 1$ [i.e., up to energies ~100 Mev since $\overline{\nu}^2/n \sim R^{-1}$ (\overline{n}/mc) × (ϵ/mc^2)⁵ where R is the radius of curvature], Eqs. (1) and (2) describe the intensity of emission of photons with frequency $\omega_0\nu = eH\nu/\epsilon$ in the direction θ when the electron spin is flipped. Comparison of these expressions with the classical Schott formula

$$dI^{\nu} = \frac{1}{2\pi} \left(\frac{\nu e^2 H}{\varepsilon} \right)^2 \left(\cot^2 \theta J_{\nu}^2 + \beta^2 J_{\nu}^{\prime 2} \right) do,$$

which describes the intensity of radiation without spin flip, gives

$$dI_{10}^{\nu}/do \sim (\beta \nu/n)^2 dI^{\nu}/do \ll dI^{\nu}/do,$$

and $dI_{01}^{\nu} \sim \beta^2 dI_{10}^{\nu}$. Consequently, radiation accompanied by spin flip is of order $(\beta\nu/n)^2$ relative to the total radiation. The quantum corrections of order ν/n , calculated by Sokolov and Ternov,² refer to radiation without spin flip.

We conclude that electron depolarization due to radiation is exceptionally small. For an electron of energy ϵ the radiation maximum occurs in the region $\overline{\nu} \sim (\epsilon/m)^3$. Making use of the relations eHR = $\beta\epsilon$, 2ecħHn = $\epsilon^2\beta^2$ we find that the emission probability with spin flip during one rotation in the magnetic field is of the order of magnitude

$$dw_{10} / dN \sim \beta^2 \left(e^2 / \hbar c \right) R^{-2} \left(\hbar / mc \right)^2 \left(\epsilon / mc^2 \right)^5,$$
 (3)

where R = radius of curvature, N = number of rotations. N must equal 10^4 to 10^5 for the magnetic moment of the electron to be measured with an accuracy sufficient to include the second correction⁴ $\Delta \mu^{(2)} / \mu_0 \approx -0.3 (e^2/\hbar c)^2$. Clearly, in such an experiment depolarization due to emission of photons is unimportant.

²A. A. Sokolov and I. M. Ternov, Dokl. Akad. Nauk SSSR **92**, 3 (1953).

³ I. M. Ryzhik and I. S. Gradshtein, Таблицы интегралов, сумм, рядов и произведений (<u>Tables</u> of Integrals, Sums, Series and Products), Gostekhizdat, M. 1951, p. 414.

⁴R. Karplus and N. Kroll, Phys. Rev. 77, 536 (1950).

Translated by A. Bincer 92

¹H. Mendlowitz and K. M. Case, Phys. Rev. 97, 33 (1955).