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The kinetics of the diffusive process of formation of grains of a new phase in a supersaturated 
solid solution is studied at a late stage of the process ( coalescence of the grains ) . The exact 
asymptotic solution of the problem is obtained and investigated. The asymptotic distribution 
function is derived, the asymptotic number and average size of the grains are determined and 
the process of establishment of the asymptotic laws is analyzed. As an. example of application 
of the theory, the mechanism of sintering is considered. 

1. INTRODUCTION. STATEMENT OF THE 
PROBLEM 

DuRING the decomposition of a supersaturated 
solid solution, two stages must be distinguished in 
the diffusive process of formation of grains of a 
new phase. In the first stage there occur the fluc
tuating formation of nucleation centers of the new 
phase and their growth directly out of the super
saturated solution. In the second stage, when the 
grains are fairly large and the degree of super
saturation becomes extremely small, the principal 
process is coalescence: large grains "devour" 
small grains (the larger grains grow by the dis
solution of smaller grains). In this second stage 
new nuclei would have to be of macroscopic size; 
thus their formation is practically excluded. 

In the present paper we consider the kinetics 
of grain growth (coalescence) in the later stage. 
Other writers1- 4 have considered a problem of 
this type without arriving at a correct solution. 
Todes4 has made the most thorough study of the 
question and has stated correctly that the asym
ptotic process for long times is independent of 
the initial conditions (the initial grain size dis
tribution). He also correctly determined the order 
of magnitude of the rate of decrease of the number 
of grains with time. However, his quantitative 
solutions contain logarithmic divergences without 
physical meaning, which show that his reasoning 
is incorrect and also throw doubt on those of his 
qualitative results which are actually correct. 
The extremely peculiar behavior of the exact 
solution and the entire analysis which will be 
given below permit us to understand the origin 
of Todes' erroneous solution. 

In stating the problem we shall, for simplicity, 
neglect anisotropy and assume the grains to be 
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spherical. Allowance for nonspherical shapes 
would only change some numerical constants in 
the equations which follow. The equilibrium con
centration CR at the surface of a grain has the 
following usual relation to its radius R: 

(1) 

where C00 is the concentration of a saturated 
solution and a is associated with the interphase 
surface tension, with a = ( a/kT) VC 00 ( V is the 
volume of an atom of the solute). 

Assuming the degree of supersaturation L}. = 
C - Coo to be small, i.e., L}. « 1, and neglecting 
the "interaction" between grains (which is permis
sible because the grain diameter is small com
pared with the intergranular separation), we ob
tain for the diffusion flux of the dissolved substance 
per unit of grain surface the expression* 

and thus for the change of grain radius with timet 

dR D ( rx) d!=R~-R. (2) 

Thus for each value of the supersaturation L}. there 
exists a critical radius Rcr = at}. at which the 

*The expression given for the flux corresponds to a sta
tionary value of the gradient a C/ a r on the grain boundary. 
It is £ asily seen that this is permissible when the initial 
supersaturation is amall, L'l. 0 « 1. 

tWe note that if the grains are nonspherical but preserve 
similarity of their shapes while growing during the later stage 
(a similarity associated with the anisotropy ex), Eq. (2) and 
all subsequent quantitative results remain valid. Then R 
signifies (3V/4rr)'l., V being the grain volume, and ex and D 
differ from their previous values by only a numerical factor 
which takes the grain shape into account. 
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grain is in equilibrium with the solution; when 
R > Rcr the grain grows while when R < Rcr it 
dissolves. This is the evident cause of the "devour
ing" of small grains by large grains. ~ and Rcr 
vary with time. 

We shall hereafter use the dimensionless quan
tities p = R/Rcr. t' = t/T, ( Rcro = ol/ ~0• T = 
R~ro I a~. ~0 is the initial supersaturation, Rcro 
is the initial critical radius ) . Omitting the prime 
in t', we obtain 

dp3 1dt = 3(plx-1), (3) 

where x ( t) is the dimensionless critical radius 
and x( 0) = 1. 

Introducing a grain-size distribution function 
f ( p, t) and regarding v p = dp/ dt as the rate of 
grain travel in the space of grain sizes, we can 
write down the equations for the unknown func
tions f ( p, t) and x ( t ). The first of these is 
the continuity equation in grain-size space: 

at a 
Tt + -ar; (fvp) = 0, (4) 

while the second equation is the law of conserva
tion of matter: 

00 

A - 4:rc R3 I f 3 d Qo = L.>.o + qo = Ll + q, q - 3 crO ~ P P 
0 

or, with x = ~0 /~. 
co 

1 = go: + x ~ fp3 dp, x = 47rJ?1rof3Q0 • (5) 
0 

In this equation Q0 is the total initial supersatu
ration, including the initial volume of matter q0 in 
the grains. In (5) f is normalized to unit volume: 

00 

n = J f dp is the number of grains per unit volume. 
0 

Our problem thus becomes the asymptotic solu-
tion of (4) and (5) for a given initial condition 
f ( p, 0) = f 0 ( p). 

2. ASYMPTOTIC VARIATION OF CRITICAL SIZES 

To solve our problem we must first determine 
the asymptotic variation of critical sizes x ( t) 
[or of the supersaturation ~ ( t) = ~0 /x ( t), which 
amounts to the same thing]. The motion of the 
point p which represents a grain radius on the 
axis of sizes, as determined by the equation of 
motion (3), presents the following picture: The 
points located to the left of x ( t) are accelerated 
toward the left and disappear upon reaching the 
coordinate origin ( complete dissolution of the 
grain ) . The points which are originally to the 
right of x ( t) move to the right (the grains grow), 

but as the supersaturation diminishes the critical 
size x ( t) increases and successively "overtakes" 
points moving to the right, after which these points 
begin to move in the opposite direction and also 
"disappear" at the origin. This movement is 
always orderly; the original order of position of 
the points is preserved. 

Both the form of Eq. (3) and the physical mean
ing of x ( t) suggest that for the independent vari
able in Eqs. (3), (4), and (5) we take instead of 
the grain radius p the relative radius (with re
spect to the critical radius ) 

u =pI X (t). (6) 

Since for t-oo the supersaturation ~- 0, we 
have x ( t) - oo. Thus x ( t) can be used to com
pute time.* The "equation of motion" (3) acquires 
a canonical form when "time" is represented by 
the quantity 

Insertion of (6) and (7) into (3) gives 

du3 ld't=y(u-1)-u3 , 

y = y ( 't) = 3dt I dx3 • 

If u ( v, T) denotes the solution of (8) for the 
initial condition u lr=o = v and we consider that 

(7) 

(8) 

(9) 

p ( v, T ) = xu ( v, r ) , x ( 0 ) = 1, and r I t=o = 0, the 
total quantity q of matter in the grains can be ex
pressed through the initial distribution function 
f0 ( p) as follows: 

q=xQ0 ~ { 0 (v)x3 ('t)u 3 (v, 't)dv. (10) 
v,(~) 

Here v0 ( T), the solution of the equation u ( v0 ( r), 
T) == O,o is the lower limit of the original sizes of 
grains which had not dissolved up to the time r. 
Noting that x3 = e 7 , we can write (5) as 

00 

I - e-~ia = xe~ ~ f 0 (v) u3 (v, 't) dv. (11) 
t 10(T) 

Equations (8) and (11) form a complete system. 
These equations can be used to determine the un
known function y ( T) = 3dt/dx3 and thus ultimately 
X ( t ). 

Three possibilities exist for the asymptotic be
havior of y(r) as r-oo: (1) y(r)-oo; 
(2) y ( r) - const; (3) y ( T) - 0. We shall begin 

*A formal exception is the case in which the initial dis
tribution is a o function [f. = Ao(p- p0)] or a sum of o func
tions. In this case x(t) -> const and the common size p as
sumes an equilibrium value. But the case is also unstable 
since even an extremely small spread of the initial distribution 
leads to x(q -> oo. 
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our analysis with the case y = const. Depending 
on the value of y, the curve of the velocity du31dT 
as a function of u can be tangent to the horizontal 
axis (for y = Yo = 27 I 4), lie below this axis (for 
y <Yo), or have a positive section (for y >Yo) 
(Figs. 1, 2, 3). 

(a) When y > Yo all points that lie to the left of 
u1 move toward the left and disappear when they 
reach the coordinate origin. All points that lie to 
the right of u1 move to the point u2, approaching 
it asymptotically from either the left or right. 
Therefore for T --. oo the integral in the right 
member of (11) approaches the constant value 

0:> 

10 = u~ ~ f0 (v) dv, 
u, 

and the combined volume q of the grains, which 
is also in the right member, increases as e T, 

q = x/0e~ ....... oo, (12) 

so that Eq. (11) is not satisfied. When we take into 
account the fact that a constant value y > Yo is 
reached only asymptotically, the foregoing descrip
tion remains unchanged: we need only shift the time 
origin and let f0 ( v) refer to the time when y ( T) 
is close to its asymptotic value. 

(b) When y < Yo all points move to the left and 
reach the origin in a finite time. It follows from 
(8) that at the time T all grains have been dis
solved whose original sizes were smaller than 
v 0 ( T ) • These sizes are determined from the 
equation 

v,(~) 

\ 3u2 du 
j u"-y(u-1) = 't, 

0 

When T » 1 we have v 0 ( T ) = e T 13• Therefore the 
combined volume of the grains will be determined 
from the "tail" of the original distribution f0 ( v ): 

co 

q(,;)=xe~ ~ f0 (v)u3 (v,,;)dv-x ~ f0 (v)v 3 dv_,.o 
e-r/3 e't'/3 

(13) 

[since u(v, T) "'veTI3 ].* Thus in this case q(T) 
approaches zero and Eq. (11) again lacks a solution. 

When y --. oo and y --. 0 the reasoning for 
y > Yo and y < Yo is even more fully justified. 
Thus we need only investigate the case y ( T) --. Yo 
= 27 I 4. We note first that for the exact equality 
y = Yo all points that lie to the right of the point 
of tangency u0 = % move to the left but cannot 
pass through u0 and "stick" at this point. There
fore, just as for y > y 0, Eq. (11) cannot be satis
fied [q ( T) "' e T--. oo for T --. oo]. This means 
that y ( T) must approach Yo from below; thus 

(14) 

The points that arrive at u0 from the right "filter" 
more and more slowly through the "blocking" .point 
u0 = % at a rate that depends on the value of E ( T), 
which like y ( T) must be obtained from (11) and 
the equation of motion (8): 

~; = -(u- f)' (u + 3)- }ros2 (-r), 

where E ( T)--. 0 for T--. oo. Near u0 =% 
equation becomes 

~~ = --}(u- fY-}s2 (1:). 

With the introduction of the new function z = 
( u - % )IE it can be written as 

~ !!:__ = _ 22 _ ~ + -~ 2 d (1 I e). 
2 ed't 4 2 d-r 

*The exact value of u(v, 'r) is the solution of 

R (u) = R (v) e-~1 3 , R (u) = exp n u• _u~ ~~ _ 1) l 
0 

(15) 

this 

(16) 

R(O) ~ 1, R(v) ~ v for v » 1; therefore for v » 1 we have 
v , R (u)e-r/3 and the correct asymptotic expression for q is 

GO 

q (-r) "-' xx• ~ fo (xR) u3 (R) dR; x = e~l3 • 
1 

For u » 1, R "" u and we obtain (13). 
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A similar study shows that asymptotically 

d(i/e) 2 
-~·-+-

dT V3' (17) 

At the same time we have 

which means that the velocity dz/d ln T vanishes 
asymptotically at the "blocking" point z0 = ..f3!;. 

Thus for sufficiently large T the improved 
value of y ( T) will be 

y(T) =y0(1-3/4't2), 

and the more precise location of the "blocking" 
point on the axis will be 

(18) 

U = 3/z -1- Zoz (T) = 3/2 -1- 3/4 -;:, (19) 

Continuing the same line of reasoning, we obtain 
an asymptotic expansion for y ( T): * 

dt [ 3 ( 1 J 3 dx3 =y(-::)=Yo l-4-r2~l+(ln-r)2(l-f- ... )' (20) 

and accordingly 

This expansion can be terminated at any term that 
is followed by a relatively small term. Thus the 
basic approximation y ( T) = y0, and accordingly 
x3 = % t, is valid if r 2 = ( ln t)2 » 1. 

An interesting property of the expansions (20) 
and (21) is the fact that although the corrections 
to Yo decrease rapidly in magnitude as T in
creases and the first approximation (21) becomes 
increasingly accurate the behavior of the solution 
near the blocking point is determined by these cor
rections. 

In the entire region outside the vicinity of u0 = 
% the velocity du/dr is given by 

du 
d-r =-g(u); g(u) = (u- })"cu + 3)j3u 2 • (22) 

3. ASYMPTOTIC DISTRIBUTION FUNCTION 

In accordance with the preceding section, the 
distribution function will also be obtained in terms 
of the new variables u and T. When expressed 
in terms of the relative size u = p/x the distri
bution function <P ( u, T ) has the following obvious 

*y(T) can be written formally as y(T) = y0 (1-%w (-r)), 
where w(T) satisfies the functional equation w(z) = z-2 + 
(1 + w (In z)) when z > 1. 

relation to f ( p, t )·: 

rp (u, -c)du = f (p, t) dp = xf (p, t) du, 

whence 

f = ? (u, -c) I~. 

Except in the vicinity of u0, when T » 1 the con
tinuity equation for cp ( u, T) is given by 

Oq> _ 8q>g(u) ~ O 
a-r au ~ . (23) 

The solution of this equation to the left of u0 is 

where 

u 

, \ du 4 5 ( 3 ) '-! = )g(u) =-3 In(u + 3) + 3 1n 2 - u 
0 

1 33e 
+ 1 ~ 2u; 3- In tt•' 

and x is an arbitrary function still to be deter
mined. 

It follows from the analysis (given in the pre
vious section) of the equation of motion (8) or 
(15) and thus of the characteristics of Eq. (23) 
that the vicinity of the point u0 is to be regarded 
as a sink for all points u > u0 and a source for 
the region u < u0; for u < u0 the sink is the co
ordinate origin u = 0. Moving from right to left 
all points pass through the vicinity of u0 and re
main there longer the later they arrive. 

The distribution function to the right of u0 for 
T- oo is given by an infinitely distant portion of 
the "tail" of the original distribution, and its inte
gral contribution to both the absolute and relative 
expressions rapidly approaches zero (Appendix, 
Sec. 1). It will be shown below that the relative 
contribution from the vicinity of u0 also approaches 
zero as T - oo (Appendix, Sec. 2). Thus the pre
dominant contribution to matter conservation comes 
from grains with u < u0• It follows that this con
servation law can be used as an integral equation 
to determine the asymptotic behavior of the dis
tribution function in zero approximation for u < 
uo. ( For u > u0 the distribution function vanishes 
in this approximation.) From the foregoing con
siderations, by inserting the solution of (23) into 
the law of mass conservation we obtain an asym
ptotic equation for x: 

(24) 

From this equation it is easy to determine x ( T + ljJ) 
and thus cp ( u, T): 
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X("=+~)= Ae-~-.:., (25) 

rn (u 't:) = Ae-<-<V _1_. = 34e Ae-~ u2 exp [- 1 1 (1 - 2u 1 3)] 
T ' g (u) z'l• (u +3)'h(s/2- u(l• 

where 
'I. 

A = [xI e-<V ~ du]-l =. 3Q0 = 0.22 _go_ . (26) 
) g (u) 47tR'l 1.11 R3 
o crO crO 

We thus see that the asymptotic behavior of the 
distribution function for u < u0 is independent of 
the form of the original distribution function.* 

According to (25) the number of particles per 
unit volume is given by 

•f2 2J 

n(") = ~ rp(u, ")du = Ae-" = (j)': . (27) 
0 

Let P ( u) du be the probability that the size of a 
particle is between u and u + du. Then 

rp(u, ")=n('t:)P(u), 

where 
J 34e u2 exp [-1 I (1- 2u I 3)] 

p (u) = lz'l, (u + 3)~ (s/2- u(l· , 

(28) 

(29) 

This probability can be expressed conveniently 
with a different relative variable obtained by in
troducing the maximum size: 

Pm=3X/2, V=p/pm=u/u,,=2u/3. 

Then 

P (u) du = P1 (v) dv, P (u) = 2PI(v) I 3; 

p 1 (v) = { 2'1'ev 2 exp [- 1 I ( 1 - v)] I (v + 2)'1' ( 1 - v)"1•, v < 1; 
0 ,v>l. 

Thus these formulas completely determine the 
asymptotic size and time distributions of the par
ticles. t P ( u) is plotted in Fig. 4. 

We now note that 

" "' 
\' e-<!J u ~ 1 du =I e-<!J (u (ljl)- 1) d•l( = e-<:- u3 (•'!) /"' = 0. 
• g() .\ 0 

0 ° (30) 

*It should be noted that the distribution given by Todes 
corresponds in form to the case y < Yo of the present scheme. 
Our discussion makes it clear that such a distribution can 
never arise and that the casey <Yo is meaningless. This 
accounts for the divergence of the integrals in Todes' equa
tions. 

tFor measurements performed by means of a grain-size 
classifier it is easily shown that the distribution <P (r, 't) over 
the sizes r of the openings is given by 

F(l, 't)dl=<l>(r, 't)dr, <l>(r, 't)=r'F(r/x("t') "t'), 
3 ~~ 

F (I, -r) = 2x (":) \ 'i' (u, "t') du ' l = _r_ ' 
.\ Y(u 1 /) 2 - 1 x ("t') 
l 

P(u) 

F(l.r} 
2"(r) 

FIG. 4 

FIG. 5 

We have used here the relation 

du3 ld~= u3 - 4(u-1)j27. 

15 l 

This indicates that u = 1; it thus follows that 

p = UX =X(-:). 

(31) 

(32) 

In order to obtain the distribution over absolute 
values of the radius p we need only replace u 
by p/x in (25) and divide by x, for which 

x 3 =4tj9. (33) 

Considering that, according to (32), v = R/R and 
returning to the original dimensional quantities, 
we obtain 

f (R, t) = n (t) P (R I R) I R, 

n(t)=~Q0 jR3 =Bjt, ~=0.22, B=li2Doc, 

R3 = 4Doct / 9, (34) 

where P ( u) is given by (28). The supersaturation 
at a given 'time is given by 
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~ ( 3 )'f, ( T )'/, -'/, r 3 )'''( 1)(2 )'1, 
~ (t) = xtt) = \2 ~o T =At ' ), = \2 7.J 

(35) 

Finally, we shall discuss the limits of applica
bility of the formulas which have been derived. 
The preceding analysis shows that the asymptotic 
expressions are valid subject to the condition 

Here Rcro = od ~0 is the initial critical radius 
for the coalescence process ( ~0 is the initial 
degree of supersaturation). We must also take 
it into account that if the initial average grain 
size is of the order of the critical size ( Ro "' Rcro), 
this size will enter into the calculation performed 
above. But if R0 » Rcro the grains will grow 
directly from the solution in the first stage. This 
process will continue until the degree of satura-
tion drops to the point where the average size is 
of the order of the critical size Rt ....... Rcrt), after 
which coalescence will generally begin. This size 
must then be used as the initial size, with its mag
nitude determined essentially by both the initial 
degree of supersaturation and the initial number 
of nuclei ( if the latter can be regarded as fixed). 

Thus with initial supersaturation ~0 and initial 
number n0 of grains, and with Ro » Rcro = a/ ~o. 
growth from the solution will continue up to the 
size 

and in the initial stage 

iR 2 
= 2D(~ - 4rt R3n0J = 2D~0 (1-(R/ Rcr1) 3)· 

df O 3 I 

(36) 

t 1 ....... RI/D~0 is the duration of the first stage. 
The characteristic time of the first portion of 

the second stage ( coalescence ) is 

t 0 ~ R.U Drx ~ i1Rd RcrO; 

in our case R 1 » Rcro• that is, t 0 » t 1• The de
pendence of the average size on time in this case 
is plotted in Fig. 6. 

4. PRESENCE OF A BOUNDARY. THEORY OF 
SINTERING 

In the preceding sections we have investigated 
coalescence in infinite space. Thus the problem 
did not involve macroscopic diffusive flow of the 
solute. The situation changes when spatial uni
formity is absent, the most important case being 
the presence of a boundary between the solution 
and a different phase. When this second phase is 

_J, 
p 

FIG. 6 

the pure solute (or, more generally, the phase 
for which we are investigating the grain growth), 
we get on this boundary ~z=o = 0, which pro
duces macroscopic diffusive flow to the boundary. 

An.important special case occurs when the part 
of solute atoms is played by vacancies and the part 
of the grains is played by pores which result from 
the coagulation of vacancies in a crystal that is 
"supersaturated with vacancies." When a free 
surface exists in such a crystal, two competing 
processes will occur: far from the boundary -
the growth of pores (vacuum crystals ) and their 
coalescence according to the scheme developed 
previously; near the boundary - the dissolution 
of pores and the diffusion of vacancies to the boun
dary (which can be regarded as a pore of infinitely 
large radius). Sintering is associated with this 
process of pore expulsion. 

We shall discuss henceforth this specific proc
ess although all results will, of course, also apply 
to the more general case of a supersaturated 
solution. 

For a half-space, Eq. (3) for grain growth and 
Eq. (4) for the distribution function [or the equiv
alent Eqs. (8) and (10)) will be retained. But in
stead of the conservation law Q0 = ~ + q, which 
corresponds to (5) [or (11) respectively), we 
must write a diffusion equation. Then each point 
z is a source (or sink) of strength dq/ dt, q -= 
q ( z, t) resulting from dissolution of the pores. 
Thus the exact system of equations will be 

o<~+q) - Da•D. ~I = O· at - ()z2 ' z~o ' (37) 

00 

q=xxs ~f0 (v)u3(v,'t)dv, x=!l0j~(z,t), (38) 
v('r) 

where u ( v, T) satisfies (8) and is itself deter
mined by the function ~ ( z, t). 

The analysis in Sec. 2 has shown the peculiar 
"stability" of the asymptotic law found for the 
variation of supersaturation (35), 

!l = )..t-'1., 
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which means that the slightest retardation of the 
asymptotic reduction of supersaturation results 
in the infinite growth of grains ( q - oo) and is 
thus impossible. On the other hand, even a slight 
acceleration of the asymptotic reduction of super
saturation leads relatively rapidly to complete 
dissolution of the grains ( q - 0 ) . Therefore the 
asymptotic process of sintering must be the fol
lowing. Three sharply separated regions are 
present: 

(a) The region most distant from the boundary 
( z2 < z < oo ) , which is not affected by the boundary 
and where, as in the case of infinite space, super
saturation is given by Eq. (35). 

(b) The region z 1 < z < z2, where dissolution 
of pores (grains ) occurs. 

(c) The region 0 < z < zt> where pores are 
already completely absent and purely diffusive 
expulsion of vacancies occurs. The boundaries 
of these regions z 1 ( t) and z2 ( t) move deeper 
into the specimen so that the "crust," which is 
free of pores, is continuously thickening. Strictly 
speaking, Eqs. (37) and (38) may be solved only 
for the intermediate region z 1 < z < z 2• But, as 
will be shown below, ( z2 - zt)/z2 « 1. There
fore in first approximation we set ( z 1 + z2 )/2 = 
t, and replacing this region by the correspond
ing boundary condition, we determine the position 
of the boundary t ( t) and the variation of the 
concentration in the surface layer 0 < z < t (in 
the crust). Thus 

~ =O· 
z::o~{) ' 

~ - )t-'1 •. 
Z=~- '- ' 

D~ az Z=t; 

(39) 

di; 
=Qo(jj· (40) 

The last condition replaces the transition region 
and expresses the fact that the boundary t ( t) is 
a source of strength Q0dt/ dt ( since to the right 
practically all excess vacancies are within pores). 
The solution of (38) together with the boundary con
dition ( t.l z=o = 0) will be obtained in the form 

00 

t. = "6 an ( t) zn; we then obtain from (39) 
n=1 

~ = ~ p"rx1 (I) 22n+l 1 d 
kJ (2n+1)! ' p =Ddt" 
n~o 

Before satisfying the other two boundary condi
tions, we note that a 1 ( t) is an asymptotically 
decreasing function of time ( since it represents 
flow on the boundary z = 0, a 1 (t) = Dot./oz lz=o ). 

We shall therefore obtain a 1 asymptotically 
in the form a 1 = B/ts, s > 0. Then we have from 
(39) 

~ = B .!..._ ~ (- 1 t (~)n s (s + 1) ... (s + n) (41) 
t' kJ Dt (2n + 1)! 

n=o 

As will be shown below, t2 ( t) varies asymptotic
ally more slowly than t ( t2 ( t )/t- 0 for t- oo). 

Thus the main term of the asymptotic expression 
is that with n = 0: 

~ = Bz / ts = IX1Z. (42) 

Inserting (41) into (39), we have 

As a result we obtain 

(43) 

The relative width of the intermediate region 
now remains to be determined. According to (43) 

a: I c = at I 3t = T ct (t) I 3t, (44) 

where T d is the time of dissolution of the largest 
grains present at the boundary at time t, Rmax = 
3Rcr/2. In region I the critical radius as a func
tion of time is 

R~r~ i 2 • 

A simple calculation shows that in the equation of 
motion (8) y = 3dt/dx3 :s 2% < y 0• From this equa
tion we obtain the time of dissolution of the largest 
grains ( u0 =% ), Td ( t) ~ t/3. This gives for the 
relative width 

We note that 

(45) 

Moreover, 

a~ 1 t = Q'd' 1 3Q'd'= 113 Q~· ~ 1, (46) 

where l is the average distance between grains. 
The inequalities (45) and (46) denote that dt » 
l » R, which means that the width of the interme
diate region is considerably larger than the aver
age separation of the 'flares and the average size 
of the pores (grains), while at the same time it 
is considerably smaller than the first region (the 
crust). This also justifies all assumptions which 
we made in order to obtain the asymptotic expres
sions. 

The periods of time for which the asymptotic 
formula (43) can be used are the same as for the 
asymptotic expression for coalescence in infinite 
space. 
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A special situation occurs when we take into 
account the finite size of a specimen instead of 
only a single boundary. For example, for a plate 
of thickness a there exist three characteristic 
times: the time for diffusive escape of vacancies 
at the surface of the plate ( T0 ,...., a2 /D), the time 
for growth of pores from the solution ( T 1 ,...., 

RUD~0 , see page 336), and the characteristic·
time for coalescence ( T co "' iP /Da ) 

In order to make the foregoing "crust-forming" 
sintering mechanism possible, the diffusive es
cape time To must be considerably longer than 
T00 , that is, a2 » R.f/a, and the average size 
of the pores which enter into this inequality must 
be in accord with the development of the coales
cence process, R » R1• In the other limiting 
case T0 « T1 the vacancies escape without form
ing pores. In the intermediate case a2 ,...., Rf/ a 
the kinetics of the process is determined by fac
tors associated with the initial distribution and 
is not of a general character. 

The method which has been proposed here can 
be applied to a number of similar problems, which 
will be investigated separately. 

APPENDIX 

Determination of the Distribution Function for 
u > u0 in the Vicinity of the Point u0 

1. We shall determine the distribution function 
for u > u0• Introducing lf! = J du/ g ( u) we note 
that g ( u)- u/3, u- el/!13 for u- oo, that is, 

ux'/,----" exp [(<:+~)I 3]. (A.l) 

In addition, the solution on the right for u - oo 

must be determined by the initial distribution 
function: 

X("=+~)-'> f 0 (ux'/.) x'l•g (u), (A.2) 

where f0 is the initial distribution over p. From 
this condition we determine the distribution for 
u > u0: 

X("=+~)= f0 (z)zl3, z = e<~H>Ia (A.3) 

or 

rp(u,<:)=f0 (z)z(3g(u). (A.4) 

f0 ( z ) varies at least more rapidly than z - 4 (which 
00 

is necessary for the existence of 1 f0 ( z) z3 dz ), 
0 

and usually is an exponential function of z. Hence 
the probability density for u > u0 in zero approxi
mation vanishes: 

P (u, <:) = 'P (u, "=)In("=) 

1 e-<11 
= 3A·fo(z)z4 g(u) -'>0 for Z-'>00. (A.5) 

The probability density for u < u0 is known to be 
finite. 

2. We shall show that the integral contribution 
from the vicinity of the point is negligibly small 
for T- oo. The amount of matter in this vicinity 
is given by 

u,+B 
q8 = x3 ~ tpu3du = uge~na ("=), (A.6) 

U 0-8 

u,+B 
na('=)= ~ rpdu, l~o~s(<:). (A.7) 

u.-8 

From the equation of continuity we obtain 

dn [u,+B 
_ ___a = q>g (u) = Ae-~ e-<)l(u,-B) = Ae-~ exp (- 3/2 o) 
d"C u,-B 

(A.B) 

(the flow to the right is determined for T - oo 

by the infinitely distant tail of the distribution 
and can thus be neglected), 

na = Ae-~ exp (- 3128) + B; 

q8 =A exp ( -312 o) +Be~. (A.9) 

It is evident that B = 0, since :rhatter must be 
conserved. We finally obtain the quantity of 
matter in the vicinity of u0 for T - oo: 

qa =A exp (- 312 B)-+ 0, a-+ 0. (A.lO) 

3. We shall show how a more accurate expres
sion for the distribution function is obtained in the 
vicinity of the point u0 = %. The continuity equa
tion in the vicinity of this point is 

a'P a 
(h + au q>g (u) = 0, g (u) 

(A.ll) 
2[( 3"2 ] =-3 u--2 ) +s2 (<:) ,s(-.;)=314<:. 

Introducing the notation 

Z= ~ (u-+)'=, f(z,-.;)dz=rp(u,<:)du. (A.12) 

we obtain 

at a ( 1 )z a!n"C-a-zfg(z)=O, g(z)= z- 2-. 

The solution of this equation is 

We now note that 
'-

(A.13) 

(A.14) 
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u 
\ du \ dz 1 2 1:2 \ dz -r+ J g(u) ~1:exp jg{Z}, g(z) ~3 ~exp J~, 
0 

(A.15) 

In actuality 
u 

1 + ~ gd(:) = " ( 1 - 1 1 + ( u - ~ ) ") = " ( 1- -H 
0 

(A.16) 

Also, for such values of u we must obtain the 
previous C:.istribution function in zero approxima
tion: 

dz A I ( 1 )} f du-~ 2/s (u- "iz)2 exp \- "- 2Js (u- "h) , z _"}> 1. 

(A.17) 

Hence we obtain immediately 

1: '\ dz \ dz J f = Ag(Z)exp [.\ g(Zf- "exp J g(Zf . (A.18) 
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Minimal polynomials in the matrices occurring in relativistic wave equations and the spin 
matrices are used to construct projection matrices, which are dyads describing arbitrary 
possible states of a free particle of arbitrary spin. The fundamental physical quantities 
(energy and momentum, charge and current, transition probabilities) are expressed directly 
in terms of these projection operators in an invaria.}lt way (independent of the choice of basis 
for the representation). Thus the calculation of various effects for particles of any spin is 
reduced to the computation of the traces of certain combinations of matrices. As examples 
of the application of the method· we obtain the general conditions for definiteness of the energy 
and charge for particles with a single mass and give a simple derivation of the general com
mutation relations for particles of arbitrary spin. 

IN various calculations relating to particles with 
spin one needs to find the free-field wave functions, 
which are solutions of the first order equations 

where x4 = it, c = h = 1, and the .Yk are square 
matrices. For plane waves 1/J ~ e 1Px, correspond
ing to the four-momentum p = ( Pk ), these equa
tions take the form 

(iPkYk + ><) 4 = 0. (1) 

We use the notation p = iPkYk· As has been shown 
in reference 1, the minimal equation for the matrix 
p in the general case has the form 

p (p) = pn (p2 + AiP2) (p2 + A~p2) ... (p2 + A~p2) = 0, (2) 

where A.z ( l = 1, 2, ... q) are distinct nonvanish
ing eigenvalues of the matrix y 4• To each value 
± A.z there corresponds a set of states of the par
ticle. 

Since p2 = - m 2 and A.z = K/mz, where m1 = 
- p(Z)2, we can write instead of Eq. (2) 


