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A method is proposed for finding the degeneracy caused by magnetic symmetry. The method 
is used to examine the nature of the splitting of atomic terms in a magnetic crystal for all 
cases of magnetic symmetry, under the assumption that the total angular momentum of the 
atom is integral. The results are compared with the splitting of atomic terms in a nonmag­
netic crystal. It is found that the magnetic interaction in the crystal does not always remove 
the degeneracy of the atomic energy levels completely. It is shown that the results obtained 
are applicable to finding the splitting of terms of an atom in a nonmagnetic crystal which is 
placed in a magnetic field. 

l. The field due to the other atoms of the crystal 
acts on an atom located in a crystal. This field 
has a definite symmetry which depends on both 
the crystal symmetry and on the position of the 
atom under consideration. The symmetry of the 
crystal field is a subgroup of the symmetry class 
of the crystal. The crystalline field can be treated 
as a perturbation which splits the energy levels of 
the unperturbed atom. This splitting is completely 
dependent on the symmetry of the crystal field at 
the point where the atom is located. 

The question of splitting of atomic terms under 
the action of the crystalline field was treated by 
Bethe.1 If we assume that the perturbation due to 
the crystal field is so small that the spin-orbit 
coupling in the atom is not broken down, we can 
start from a state of the free atom which is given 
by its total angular momentum J and its parity. 
Under the influence of the crystal field, the sym­
metry of the atom is reduced, which leads to par­
tial or complete lifting of the degeneracy of the 

atomic state. To find this splitting we must ex­
pand the irreducible representation of the sym­
metry group of the free atom in irreducible rep­
resentations of the symmetry group of the crystal 
field. The irreducible representation of the sym­
metry group of the free atom ( spherical symme­
try) gives the term of the unperturbed atom, while 
the irreducible representations of the symmetry 
group of the crystal field which are found in the 
expansion give the components in the splitting of 
the term. 

We must however make one important reserva­
tion. The free atom is symmetric under time in­
version. If the crystal field is purely electric, it 
is also symmetric under the time inversion R. 
Then the perturbed atom must also possess this 
symmatry. One might think that the symmetry 
with respect to R could be taken into account in 
the usual scheme of expansion in irreducible rep­
resentations by assuming that the symmetry group 
of the crystal field also includes the time inver-
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sion. However this approach is incorrect. The 
point is that time inversion results in the replace­
ment of the wave functions by their complex con­
jugates (when the spin is omitted). Complex con­
jugation is not a linear operation and, consequently, 
the symmetry group including the time inversion 
can have nonl'inear representations in the basis 
of the wave functions. For this reason the effect 
of the time inversion on the splitting of atomic 
terms is treated outside the usual scheme:2 one 
first treats the term splitting omitting the sym­
metry under the time inversion R, and then 
counts the two nonequivalent complex conjugate 
irreducible representations not as two different 
states, but as a single state with a degeneracy 
twice as great as the dimensionality of the rep­
resentations.* 

2. In the present paper the treatment of the 
splitting of atomic terms by a crystal field is 
extended to the case of magnetic crystals (fer­
romagnetics and antiferromagnetics ) . In this 
case an atom in the crystal is acted on not only 
by an electric field but also by the magnetic field 
due to the other atoms in the crystal. Thus the 
symmetry group of the crystal field is not one 
of the 32 crystallographic classes, but is a mag­
netic symmetry group (magnetic class ) . 3•4 Since 
the symmetry of the free atom contains all the 
elements of the magnetic classes, the symmetry 
of the perturbed atom will coincide with the sym­
metry of the field of the magnetic crystal. 

The magnetic classes are of two types. 3 The 
first consists of those magnetic classes which 
coincide with the 32 crystallographic classes. 
The term splitting in a field with such a symme­
try can be found as in reference 1. The results 
will be different, however, in that the components 
in the split term, which correspond to nonequiva­
lent complex conjugate irreducible representa­
tions, should be counted as different, and not as 
coincident, as is the case when there is symme­
try with respect. to R. 

The remaining 58 magnetic classes contain 
symmetry elements which are products of "rota­
tions"t A with the time inversion R, but do not 
contain R itself. It is easily understood that, 
because of the time inversion, an operation like 
RA transforms the wave functions nonlinearly. 

*This is correct if the wave functions satisfy a Schrodinger 
equation, i.e., if the spin is not included. When the spin is in­
cluded, the same result is found if the angular momentum of the 
atom is integral. 1 

t By "rotations" we always understand both true rotations 
and rotation-reflections which are a product of a true rotation 
and the space inversion. 

The usual procedure for finding the splitting of 
atomic terms is therefore not applicable in this 
case. 

The splitting of atomic terms when the crystal 
field has the symmetry of one of the 58 magnetic 
classes will differ essentially from the splitting 
in the case of the crystallographic classes. 

3. We now formulate the problem. A state of 
the free atom constitutes an irreducible represen­
tation of the symmetry group of the sphere, with 
definite total angular momentum J and definite 
parity. The state is ( 2J + 1) -fold degenerate. 
Now we introduce the atom into a field having 
the symmetry of one of the 58 magnetic classes, 
and try to find the resulting term splitting.* 

The symmetry group G of a magnetic class 
can be divided into two parts (cf. reference 3). 
The first part consists of all the "rotations" in 
the group G and does not include transforma­
tions involving the time inversion. These "rota­
tions" form a subgroup H of index 2 in the group 
G, i.e., H contains half the elements of G. The 
symmetry elements of G which are not contained 
in H are products of "rotations" and the time 
inversion. 

To find the term splitting we proceed as fol­
lows. First we consider the term splitting which 
would occur if H were the symmetry group of 
the perturbing field. This splitting is found in the 
usual fashion by expanding the irreducible repre­
sentation corresponding to the free atom state in 
irreducible representations of H. In doing this, 
it is necessary to count nonequivalent complex­
conjugate irreducible representations as belong­
ing to different components in the split term. The 
resulting splitting will be more complete than the 
actual splitting since the symmetry of H is lower 
than the actual symmetry of the perturbed atom. 
Actually the presence in G of symmetry elements 
which are not contained in H can lead to indistin­
guishability of components corresponding to dif­
ferent irreducible representations of H. Conse­
quently to find the actual splitting of atomic terms 
under the influence of a pertl.U'bation with the sym­
metry G we must establish how the irreducible 
representations of H change under the action on 
the basis of the representation of those symmetry 
elements in G which are not in H. The initial 
and the resultant representations are to be counted 
as belonging to the same component. 

It is obviously sufficient to take only those ele-

*We are interested only in the number and degeneracy of the 
components in the splitting of the term. Naturally, the magni­
tude of the splitting, i.e., the distance between components, 
cannot be found on the basis of symmetry alone. 
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TABLE I. Tabulation of the 35 magnetic classes G 
whose "rotation" subgroup H has only real 

irreducible representations 

a H a 

T 1 4 --
2 1 42 
-- -
m 1 4/m -

2/m 2 4mm 
- -2/m m 4.jmmm 

yn:_ 1 4/mmm 

222 2 4/mmm -- -
2mm 2 4/mmm -
2mm m 4 -- --

mmm 222 42m ---
mmm 2mm 42m 

- --

mmm 2/m 3m 
-·- --

ments which when adjoined to H generate the 
whole group G. 

Since the subgroup H has index 2, it is suffi­
cient to adjoin to it any element of G-H in order 
to get G. We denote this element by RB, where 
R is the time inversion and B is some "rotation." 

4. Let us consider any irreducible representa­
tion of the group, with the basis lf;1 ( x), l/J2 ( x), ... 
1/Jn ( x), where x is the set of arguments of the 
wave functions. The action of RB on the basis 
functions can be divided into the action of the 
"rotation" B and the action of the time inver­
sion. In the present paper we limit ourselves to 
the case of integral J. In this case the results of 
including symmetry under time inversion are the 
same as when the spin is omitted entirely .2 Thus 
we may assume that the wave functions satisfy the 
Schrodinger equation and are consequently trans­
formed into their complex conjugates by the time 
inversion. 

The 58 magnetic classes which do not reduce 
to the 32 crystallographic classes can be divided 
into two categories. Those magnetic classes 
whose groups have only real irreducible represen­
tations, (where by a real representation we mean 
one whose characters are real numbers ) , belong 
to the first category, while the remaining magnetic 
classes belong to the second. 

Let us. consider the change in the irreducible 
representations of the first category of groups 
when the element B acts on the basis. We choose 
a basis consisting of real functions.· In this case 
the "rotation" B transforms the old basis into a 
new one which again consists of real functions. 

H a li 

2 3m 3m 
-

222 62m 3m -
2/m 62 32 -
2mm 62m 32 
42 6mm 3m - -

4mm 6fmmm 62m 

mmm ?_/'!!_n:_m 3m 
42m 6fmmm 62 

2 6! !!!mm 6mm 
222 m3m 43 - -
2mm m3m 43m -

32 

Then the subsequent action on the basis by the 
element R produces no change. Thus the action 
of RB on the basis reduces to that of the "rota­
tion" B alone. The splitting of the term will be 
the same as it would be if the time inversion R 
were replaced by the unit element E in the sym­
metry group of the perturbing field. Thus for 
those magnetic classes for which the representa­
tions are real, we can obtain the splitting of the 
atomic term by the standard procedure, as in 
reference 1, by choosing as the symmetry group 
the crystallographic c!lass G' which is obtained 
from the magnetic class G by replacing R by 
E. 

By using the table of characters of irreducible 
representations of the groups of the crystallo­
graphic classes (cf. for example reference 5), 
it is easy to find all the magnetic classes belong­
ing to the first category. There are 35 such 
classes (Table I). 

We now go over to those magnetic classes for 
which the subgroup H has complex representa­
tions. For these magnetic classes, the action of 
elements RB on the basis of the irreducible rep­
resentations of H does not reduce to the action 
of a "rotation" alone. 

Under the action of B, the basis 1/Ji changes 
to 1/Ji = Bikl/Jk, and the representation T (h), 
where h is an element of H, changes into 
BT (h) B-1• The additional action of R on the 
basis changes the basis functions and the repre­
sentations to their complex conjugates. The net 
result is that RB changes the representation 
T(h) to (BT(h)B-1 )*. Wemustnowdemand 
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TABLE II. Characters of 
irreducible representations 

of the group 4 

educible 
Group elements 

lrr 
rep resentations 

I I I E L, L, I,-~ 

A I 1 1 I 1 1 
B 

I 

1 -1 
I 

1 -1 
£1 1 i -1 -i 
£2 1 -i 

I 
-1 i 

that the representations T (h) and ( BT (h) B-1 )* · 
belong to the same component in the split term. 
We note that BT(h)B-1 = T(BhB-1 ). The rota­
tions B and h form the group G', which is 
obtained from G if the element RB is replaced 
by B. The group H will be a subgroup of index 
2 in G as well as in G. We know that every 
subgroup of index 2 is a normal divisor ( invari­
ant subgroup). Therefore the -element BhB-1 

belongs to the subgroup H. Consequently the 
change of the representation under transforma­
tions of the type RB is found by using the table 
of irreducible representations. Actually the 
matter is further simplified by the fact that the 
irreducible representations are given by their 
characters. 

We shall first apply these considerations to 
two examples. Suppose the atom is in a field of 
symmetry* 4/m: E, L4, L2, L(1, Rah, RS4, Ri, 
RS41• Here the subgroup H will be the group 
4 ( c4 ): E, L 4, L 2 , L41• The group 4 has the ir­
reducible representations A, B, Eto E2 (cf. 
Table II). It is most convenient to choose Ri as 
the element RB. The elements BhB-1 are ihC1 

= h, i.e., the matrix T (h) and consequently the 
character x (h) are not changed by the "rota­
tion" i. The time inversion changes X (h) to 
x* (h). This means that the irreducible repre­
sentations A and B are not changed, while the 
irreducible representations E1 and E2 are 
transformed into one another. Consequently the 
representations E1 and E2 are indistinguishable 
in our problem. Thus in this example the splitting 
occurs as for a perturbation with symmetry 4, 
but the complex conjugate irreducible representa­
tions E1 and E2 belong to the same doubly de­
generate subterm. 

Let us treat another example. Suppose that 
the atom is in a field with the symmetry 4mm: 
E, L4, L 2, L41, 4Rav. The subgroup H is again 

*We use the "international" notation for designating the 
symmetry classes, where the dash below a symbol means that 
instead of the underlined element we should take its product 
with the time inversion. 

TABLE III. Summary of the 
12 magnetic classes for 

which inclusion of magnetic 
symmetry leads to no 
additional degeneracy 

a H 

42 4 

4mm 4 

4; m'!!!!! 4/m 

42m 4 
32 3 -
3m 3 

3m 3 
62m 6 

62 6 

6mm 6 
--

6fm'!!l!!: 6/m 

43m 23 

the group 4. As the element RB it is convenient 
to choose Rax· The elements BhB-1 will be L41 

for L4, L 4 for L(1, and L 2 itself for L2. From 
this we see that the irreducible representations A 
and B are transformed into themselves by the 
"rotation" ax, while the complex conjugate rep­
resentations E1 and E2 transform into one an­
other. Application of R again does not change 
A and B, while the complex conjugate represen­
tations E1 and E2 once again change places. 
Thus as a result of applying Rax each irreduc­
ible representation of 4 goes over into itself. 
Consequently the splitting when the symmetry of 
the perturbation is 4mm will be the same as 
when the symmetry is 4, and the complex con­
jugate irreducible representations must be counted 
as belonging to two different nondegenerate sub­
terms. 

All 23 magnetic classes for which the "rotation" 
subgroup H has complex irreducible representa­
tions are treated analogously to the examples pre­
sented above. One finds the result that the splitting 
is the same as when one includes only the symme­
tries in the subgroup H instead of the whole sym­
metry of the magnetic class, with the one impor­
tant proviso that in 12 cases the complex conjugate 
irreducible representations of the subgroup H 
correspond to different nondegenerate subterms 
(Table III), while in the other 11 cases the com­
plex conjugate irreducible representations of the 
subgroup H must be counted as belonging to the 
same doubly-degenerate component in the splitting 
of the term of the unperturbed atom (Table IV). 
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TABLE IV. Summary of the 
11 magnetic classes for 

which inclusion of magnetic 
symmetry leads to addi­

tional degeneracy 

a H 

4/m 4 

~/rl}_ 4 
3 3 

6 3 -
6 3 

6jm 3jm 

6jm 6 

6jm 3 
m3 23 
43 23 

m3m m3 

From the group-theoretical point of view these 
cases differ in that in the first case the classes of 
conjugate elements of the group H do not coincide 
with the classes of conjugage elements of H when 
it is regarded as a subgroup of G, whereas in 
the second case the classes of conjugate elements 
are the same whether H is regarded as a sub­
group of G or as a group by itself. 

5. Let us discuss the results and explain the 
effect of inclusion of magnetic symmetry on the 
splitting of terms compared to the splitting when 
only the crystallographic symmetry is taken into 
account. 

Disregard of the magnetic symmetry, i.e., 
omission of elements like RA, means that in­
stead of the actual symmetry G of the perturbed 
atom we are taking the subgroup H of G which 
contains only "rotations." However, when this is 
done it is not assumed that there is no magnetic 
interaction. 

In the case of magnetic symmetry, when the 
magnetic class coincides with one of the 32 crys­
tallographic classes, elements like RA do not 
occur in the symmetry group, and the magnetic 
symmetry of the crystal field coincides with the 
crystallographic symmetry. Because of the pres­
ence of the magnetic interaction, the crystal field 
is not invariant with respect to R, so that the 
nonequivalent complex conjugate irreducible rep­
resentations correspond to different components 
in the splitting of the term. 

The other case of magnetic symmetry is that 
in which the magnetic class contains elements of 
the type RA, while the subgroup H containing 

all the "rotations" has only real irreducible rep­
resentations (Table I). In this case the consider­
ation of the magnetic symmetry, i.e., the inclusion 
of elements of the type RA, is essential. The 
removal of the degeneracy will in general be less 
complete than when only the crystallographic sym­
metry (i.e., the subgroup H) is considered. De­
spite the presence of the magnetic interaction, 
the removal of the degeneracy may be incomplete. 

In the third case (Table III), taking account of 
the magnetic symmetry does not lead to new re­
sults. The presence of magnetic interaction re­
sults in the perturbed atom being nonsymmetric 
with respect to R. 

In the fourth case (Table IV), the magnetic 
symmetry elements make those components in 
the splitting indistinguishable which belong to 
complex conjugate irreducible representations 
of the crystallographic symmetry group. 

6. The treatment given above refers not only 
to the splitting of atomic terms in a magnetic 
crystal, but can also be applied without any re­
striction to the splitting of atomic terms in a 
nonmagnetic crystal which is in an •Jxternal mag­
netic field. In this case the symmetry of the per­
turbed atom will contain the symmetry elements 
which are common to the crystal symmetry and 
to the symmetry of the external magnetic field 
for the given orientation of the crystal in the 
field; by the symmetry of the crystal we here 
mean its crystallographic class multiplied by R. 
If the orientation of the crystal in the field is ar­
bitrary, the removal of the degeneracy will be 
complete, since there is no symmetry. But for 
certain positions of the crystal relative to the 
field it may happen that the degeneracy is not 
completely removed, in which case the consider­
ation of magnetic symmetry is essential. 

We also note that an atom in a uniform mag­
netic field has the symmetry oo/mm, and be­
longs to case 3 (Table III), for which considera­
tion of the magnetic symmetry does not change 
the term splitting. This is in accord with the 
fact that the Zeeman effect is obtained correctly 
from symmetry considerations without taking 
magnetic symmetry into account. 

In conclusion I express my thanks to Acade­
mician L. D. Landau and Prof. B. T. Geilikman 
for discussions. 
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The surface impedance of a metal is calculated with thermoelectric forces taken into account. 

l. In the calculation of the surface resistance 
(impedance) of metals, one usually starts with 
Ohm's law, 

where aik is the conductivity tensor, and E and 
J are the vector electric field intensity and cur­
rent density.* One thereby neglects the effect of 
heat waves that are produced in the metal by pas­
sage of an electromagnetic wave through it. As 
will be evident later, this is correct only in iso­
tropic metals in the absence of a magnetic field, 
and in anisotropic metals when the surface of the 
metal coincides with a principal plane of the re­
sistivity tensor. 

The complete system of equations describing 
the propagation of waves in a metal, with heat 
flow taken into account, has the form 

Here ® is the high-frequency addition to the 
mean temperature T of the specimen; C is 
the heat capacity of unit volume of the metal; 
q is the heat current; Pik is the resistivity 
tensor; Kik is the heat conductivity tensor; and 

*We are interested here in the range of frequencies and tem­
peratures in which there is a normal skin effect. 

Qlik is the tensor of thermoelectric coefficients. 
The tensor aik• in general, is not symmetric. 

However, all metals possess lattice symmetry that 
excludes an antisymmetric part of the tensor aik· 
Therefore we shall hereafter suppose, in the ab­
sence of a magnetic field, that Qlik = aki. 

Besides the usual boundary conditions of con­
tinuity of the tangential components of the vectors 
E and H, we must add to the system of equa­
tions (1) boundary conditions for the temperature. 
We shall consider two limiting cases: 

(a) Heat current equal to zero at the surface: 

Q•D = 0 (2a) 

(n =unit vector normal to the surface). 
(b) Surface temperature maintained constant 

and equal to T: 

8 = 0. (2b) 

2. We consider normal incidence of a plane 
monochromatic electromagnetic wave, of fre-. 
quency w, on the surface of a uniaxial metal, 
whose principal axis ( 1 in the figure) makes 
an angle cp with the normal to the surface of the 
metal; we choose for the z axis the direction 
of the normal. Then all quantities ( E, H, ®) 
depend on the coordinate z alone. With the x 
and y axes chosen as shown in the figure, it is 
easy to show that Pxy = Pyx = Pxz = 0 and axy 
= ayx = azx = 0. It follows furthermore from 
Maxwell's equations, in this case, that h = 0 


