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The probability for hyperon decay into nucleons (hyperons) and leptons is computed. The 
energy distribution, correlations, polarization, and asymmetry of emission of the particles 
are determined. Numerical· calculations are given for the case of a universal V-A inter­
action.1 The probabilities for the leptonic decay modes of I:- and A 0 are found to exceed 
considerably the corresponding experimental upper limits. 

1. INTRODUCTION 

RECENTLY Feynman and Gell-Mann,1 as well as 
Marshak and Sudershan,2 proposed the V-A co­
variants as a universal four-fermion interaction 
and listed a number of points in favor of this pro­
posal. As was shown in reference 1 the general 
character of the interaction was such that the fol­
lowing {3 decays of hyperons, thus far not ob­
served, should be possible 

A0 ~p+e-+;;: 
0 ~ 

A ~P+iJ.-+'1, 
E-~n + e- + :;-, E-~n + t-t- + :;-, 
E-~A0 +e- +;; E+---+ A 0 + e+ + '1, 

(1) 

The probabilities of the electron decay modes 
of A 0 and I: - were computed in reference 1. In 
this work we compute, in addition to total probabil­
ities, the energy distribution, correlation, polariza­
tion, and asymmetry of emission of particles 
formed in the decay of a polarized hyperon. Since 
the coupling constant of the axial-vector interac­
tion may be renormalized by strong interactions 
in a manner different from the vector constant, 
one must take in general CA ?'- - Cv. In the com­
putation of polarization and asymmetry it was found 
convenient to calculate traces and integrate over 
unobserved variables in a coordinate system in 
which the momentum of the particle under study 
was equal to the momentum of the decaying hy­
peron, and only afterwards to transform to the 
rest system of the hyperon. 3 The assumption of 
nonzero rest mass for all four fermions partici­
pating in the decay process does not complicate 
the calculations and permits application to proc­
esses involving neutral currents such as A 0 -
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n + e- + J.l..,., if it should turn out that these exist. 
The total decay probability is given in terms of 
an integral which is given explicitly when the 
mass of one of the decay products equals zero. 

Numerical values for the probability of hyperon 
{3 decay and emission asymmetry are obtained for 
the V-A universal interaction without renormali­
zation effects ( C A = - Cv). In Appendix B we 
discuss possible types of universal parity-noncon­
serving interactions, and outline simple methods 
for deriving the S + P - T interaction results 
from the V-A (and vice versa) for processes 
involving free particles as well as for the usual 
{3 -decay process. 

2. ENERGY CORRELATIONS 

The various processes given by Eq. (1) can be 
written in a unified form as 

{ N} { e-} "" v~ Y' + fl.- + v (2) 

where Y stands for a hyperon and N for a nu­
cleon. The universal four-fermion interaction 
responsible for these processes can be written as 
follows (we consider the V and A covariants 
only): 

Hint= (qiNY~< (Cv- CAYs) ~y) (~,y'" (1 - Ys)~v)• (3) 

( From now on we shall write all formulas for the 
decay of a hyperon into a nucleon and electron only. 
The corresponding expressions for the hyperonic 
or 1.1. -mesonic modes of decay are obtained by re­
placing the index N by Y' or e by 1.1.· ) 

The transition probability [calculated using the 
Hamiltonian (3)] for the decay of a hyperon Y at 
rest with polarization ty accompanied by the 
emission of an electron of energy Ee into the 
solid angle element drle and a nucleon into the 
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solid angle element determined by its energy EN 
and the azimuth angle cpN about the axis Pe 
(measured from the tyPe plane) is given by 

( Ei, mit Pi• t"i stand for the energy, mass, mo­
mentum, and polarization respectively of the i-th 
particle in its rest frame): 

. . 1 dn, drp"' 
d\\1 (~r; Ee. EN, n., 'fN) = 27t3 !;it 2;r dE,dEN {7]2 [(my- EN- E.) - ~y(PN + p.)] [ENEe- SNe] (4) 

+ e [E,- (~Y·Pe)l [EN(my- E.)- m~· + s.ve] + "'1~11lN [E,(mr- EN)- m~ + SNe- (my- EN)(~y•p,) + E.(~y·pN)]}. 
Here 

'tj=Cv-CA, ~=Cv+CA; 

sNe :=:: (PN·P,) = 1/2 [m} + m7v + m!- m~- 2my (EN+ Ee) + 2ENEe], 

(5) 

(6) 

so that the direction of the vector PN in ty · PN is free to vary only in the angle (/JN. Integration over 
this angle yields 

(7) 

The electron-antineutrino correlation is given by a more symmetric expression (we continue to write 
simply v instead of v'>: 

1 dD.e drpv · B 
dW (~y; E., E .. , Deo rp .. ) = 27ts 47e TidE,dE .. {'1/2 [Ev + (~v·Pv)l [Ee (my- Ev) -m. -t- Sev] 

(8) 
+ e [E,- (~r· p,)] lEv (my- E.) -me + s • .,] + TJ~lllN [Ee (~y. p.,)- Ev (~y.p.)]}, 

where, as in Eq. (6) 

(9) 

The nucleon-antineutrino correlation can be obtained from Eqs. (4) to (7) by interchanging the indices 
e and v and by using the substitution 

(10) 

3. ENERGY DISTRIBUTION, POLARIZATION, AND EMISSION ASYMMETRY OF PARTICLES PRODUCED 
IN THE DECAY OF A POLARIZED HYPERON 

In order to obtain the probability for the emission of a nucleon in the direction nN = PN /I PN I and with 
the polarization tN, we must integrate the expression for the decay probability over the electron and neu­
trino variables, subject to conservation laws. Some of the details of the calculation are given in Appendix 
A. The result is 

dW (~y; E.v. nN, ~.v) _ V E~v-mJvdEN dD.N 'VfRN-(m, + m)2 ] [RN-(m.-mYJ T:\' 
- 2 (27t)3 47t R~ . 

(11) 

where 
RN = m~ + m7v- 2myEN, (12) 

T"' = T~ + T~ (~v·nN) + TIJ (~.v·ON) + Tlf (~v·n.v) ~-nN) + T~ [(~v·~N)- (~Y· nN) (~N. nN)]. (13) 

In (13) Tf describes the nucleon-energy distribution, T~ the emission asymmetry, Tr and Tr 
the longitudinal polarization, and Tr the transverse polarization. The Tr are given by 

T~ = (~2 + TJ2){(my- E.rv) (myE.rv- m'fv) r 1v - 1/ 3 my(Elv- m7v) r;'}- ~'1/m.rvR.rv rrf" + r~]; 
T~ = (~2 - TJ2) l1 E7v.- m7v {(mvEN- mlv) rt'- 1/3 my (my- E.v) r2"' }; 

T~ = (~2 - TJ2) V E7v- m7v {my (my- E.rv) r~v - 1/3 (myE.rv- m'fv) r2v}; 

Tlf = (~2 + TJ2) {my (Elv- mJv) r~ - 1/3 (my- E.rv) (myE,v- m'fv} r2v} + ~'f/mNRN [rf"- r~]; 
T~ = - 1/ 3 (~1 + TJ2) m.rvRNr~ + b1 [E.rv (m} + mlv)- 2mymJv] (riv ,_ r~vJ; 

r~ = [RN + m~- m~] [R.rv- m! +me]; r~ = [RN- (me+ m.,) 2 ] [RN- (me+ mv)2]. 

(14) 

If we set me= mv = 0 in Eqs. (11) to (14), we obtain the formulas of the V-A theory for the polari­
zation and emission asymmetry of the electrons in the decay of a J.l. meson (the index Y would refer 
to the p. meson and N to the electron). Such formulas have been given before.3 •4 
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In analogy with Eq. (11), we have for the electron 

VE;-m;doe V[Re-(mN+mvJ'j[Re-(m,v-mYJ Te 
dW (~y;E.,n., ~.) = 2 (2rc)s ~ Ra • 

e 
where 

(15) 

(16) 

(17) 

T~ = Y42 {(myEe- m;) (my- Ee) f~ - 1/3 my(£!- m!) f~} + eEeRe [I'~+ f~]- 2~"1mN (myEe- m!) Re [Re- m'fv + m~]; 
r; =- V E;- m; M [(myEe- m!) r~- 1/3 my (my- Ee) f~J + ~2Re [f~ + f~] + 2~TjmymNRe [Re- m'fv +me)}; 
T~ =-V E!- m; {Tj2 [my (my- E.) rf- 1/3 (my E.- m!) f~] + ~2Re [f~ + f~]- 2~"1mYmNRe [Re- m'fv +me]}; (18) 

r: = 'f/2 {my(£!- m!) r~ - 1/ 3 (my- Ee) (my E.- m!) r;) + emeRe [f~ + f~J;+ 2~TjmymN (my- Ee) Re [R.- m'fv +me]; 

T~ = - 1/3 Tj2meRer~ + eEeRe rrr +I'~]+ 2~YJmN (myEe- m!) Re rRe- m'fv +me]; 

r~ := [Re + m'fv- me] [Re- m'fv +me]; f~ := [Re- (mN + mv) 2 ] [Re- (mN- mv)2]. 

The formulas for polarization, emission asymmetry, and energy distribution of the antineutrino can 
be obtained from Eqs. (15) to (18) by interchanging the e and v indices and applying the substitution 
(10). 

4. DISCUSSION OF RESULTS 

The total decay probability and integrated emission asymmetry are obtained from Eq. (15) by sum­
ming over the directions of te and integrating over Ee between the limits me and [ m~ + m~ -
( mN + mv )2 ]/2my. 

An analogous procedure should be applied to Eq. (11). The results may be written as 

dW (~y, n;) = W0 [1- ()(~ (~r· n;)] dQ;j 4rc, i = N, e. (19) 

The energy integral entering into the expression for W 0 must be evaluated numerically if none of the 
masses vanish. For mv = 0 the integral can be. performed analytically and we find 

ms 
Wo= 2 (2:)3 [(~ 2 + "'2)A1 + ~'r~A2J, (20) 

where 

[( mN)2 (me)2 (mN)4 (m•)4 (mN'2(m•)4 (mN)4(me\2]}· -7- +-· +- +- +·--)- +- -i. my my - my my \my my \my my J 

(21) 

YI =.my [r + z + ( mN )2 _ ( m"-)2], y2 = my [r + z _ ( mN )2 + (.!''!_)2] 
2mN my my 2me my my 

The coefficients a~ of Eq. (19) can also be 
given in analytic form, but the resultant expres­
sions are unwieldy. It is simpler to calculate 
them for each specific case by a numerical inte­
gration of Tr and Tr over the energy. we 
give above a table of values of W0 and a 0 for 
the decays enumerated in (1). Since at this time 

only the order of magnitude of these quantities is 
of interest, we make use of the simplifying as­
sumptions ~ = 0, TJ = /2 G = 2 x 10-49 erg-em 
(i.e., Cy =- C A= G//2, where G is the con­
stant of Feynman and Gell-Mann1 ). This means 
that no renormalization is taken into account for 
either the vector or axial-vector coupling con-
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Probabilities for Leptonic Decays of Hyperons and Emission 
Asymmetries of the Produced Particles 

Decay mode W0 (sec·•) 

A0-> p + e-+::; 7.4-107 

},O_,. p + fL-+; 1.2.107 

I-_,. n + e-+; 5.4·108 

I-_,. n + rc+; 2.4·108 
L-_,. A0 + e-+ ~ 2.1·106 
z+_,. A0+ e++ '' 1.4-106 
:::;-_,. A"+ e-+ ~ 1.6·108 

::;;-_,. A0+ fL-+ ~ 4.3·107 

stants. The table also lists values of T, the ex­
perimental hyperon lifetime, and of W0r which 
is the ratio of hyperon {3 decays to total number 
of decays. 

It follows from the above that approximately 
'l'7 of the total number of decays of the ~- hy­
peron and %o of the decays of the A0 hyperon 
should proceed through the leptonic modes.* 
Therefore a contradiction with the universal 
V-A interaction would arise should the absence 
of these decay modes be confirmed. On the other 
hand, taking into account renormalization and the 
energy form factor of the interaction may decrease 
the value of W 0• 

As can also be seen from the table the inte­
grated emission asymmetry of the electrons and 
Jl mesons is small. This smallness is a conse­
quence of the assumption C A = - Cy. It follows 
that a measurement of lepton-emission asymme-

~a~,~ (1{)6 sec·• Mev-') 

ZOJ 

2 

10 

[! 10 zo J(i 
kin 

EN , (Mev) 

FIG. 1. Dependence of the hyoeron decay probability 
on the energy of the oroduced nucleon. 

*The values for the decay probabilities for A" ... p + e· + v 
and I--> n + e· + v quoted by Feynman and Gell-Mann are 
somewhat smaller than those given in the table. This discrep­
ancy disappears if it is assumed that the quantity C(x) in­
troduced in reference 1 has been set approximately equal to 
unity by the authors in their calculations. 

't" X tOto w. '1"(%) a~ or 
y' ae al-L (sec) ao 0 or 

0 

2.8 2.1 0.6 0.05 
2.8 0,33 0.4 0.06 
1.8 9.6 0.55 0.175 
1.8 4.3 0.5 0.09 
1.8 0.037 0.65 
0.9 0.013 0.5 
J 1.6 0,6 
1 0.4 0.5 

try would provide a sensitive test of this assump­
tion. 

d'w • dW (1{)6 sec·t Mev·') 
dfp d[f 

4 

EN kin, Ell kin (Mev) 

FIG. 2. Dependence of the hyperon decay probability on 
the electron or on the fl·meson energy. 

IJ 10 zo 

2 

JO 

ENkin(Mev) 

FIG. 3. Energy deoendence of the nucleon emission 
asymmetry. 

Figure 1 gives the dependence of the hyperon 
decay probability on the kinetic energy of the nu­
cleon EWn = EN- mN. Figure 2 gives the _de­
pendence on the energy of the electron, E~m, or 
of the Jl meson E}?n. The energy dependences 
of the asymmetry coefficients of the nucleon 
[ aN ( EN ) = - T~ /Tf'J'] and of the electron and Jl 

meson [ae(Ee) = -T~/Tr and all(Eil) = 
- T~/Tf] are shown in Figs. 3 and 4 respectively. 



------------------------------------------------------------- . 

320 V. M. SHEKHTER 

2 

0,! 

or---~~~-------2~0-o----

E:in, Elin(Mev) 

FIG. 4. Energy dependence of the electron or 11-meson 
emission asymmetry. 

In all figures the curves labelled 1 refers to the 
decay A0. -p + e- + v, those labelled 2 to ~- -
n + e- + v, and those labelled 3 to ~-- n + JJ.- + 
v. The remaining decays in (1) are character­
ized by analogous curves. 

APPENDIX A 

Calculation of Decay Probability 

If the interaction Hamiltonian is of the form 
(3), the decay probability of type (2) is given by 

dsPv d3p 
d\17 = 2n (Z1r)s (27<)~ d3p} (Py- PN- Pe- PJ I M 12 , (A.1) 

where 

I M 12 = 4Sp {"'/2R~yv.R'{y, + '::. 2R~Yv.R%"{v 
+ "''HR~yv.Rr y, + R~yv.R% y,]}Sp {R~yv.R~y,}. 

Here 

Ri = ap1a, R; = ap'a,}. _ y N 
1 1 1 - ;- t - ' ' e, v, 

Ra = ap a, R4 = ap a 

a:==(! +y5)/2, a=(l-y5)/2, 

and pi is the usual density matrix for the 
particle. 5 

It is easy to show that (A= yf.J.Af.J. ): 

(A.2) 

(A.3) 

(A.4) 

i-th 

Ri =- iat, /4£,, p; =-{at; /4£;, 
' ,,, ' - • "' (A.5) 

Ra =a (m, + Cp,) I 4E,, R4 = a (m,- ~,p,) I 4£,, 
where 

where 
, (A.7) 

~io = (~;,•Pt) I m,. 

L'i differs from L'i by having the component along 

the Pi direction increased Ei/mi times, and 
~io is defined by the equation 

I 

(C, Pt) = Ctv.Ptv. = 0. (A.8) 

When Eq. (A.5) is introduced into Eq. (A.2) the re­
sult is 

J M 12 = (114 EyENEeEv) M (iyi,) (tNie) + ~2 (i~ie) (t~iv) 
+ 'Yj; [mymN (teiv}---< my {(~.~te) (PNiv)- (C~Iv) (pNte)} 

+ mN {(C~te) (pytv) -(:~tv) (pyte)} (A.9) 

1 "' "' -SSp (CNPN'Yv.CYPY'Yv) 

X (- (ie)v. (iv}v- (ie)v (/v)v. + (te)cx (/~h Ecx ~v.v)J} 

( Eaf3JJ.V is the totally antisymmetric tensor with 
components 0, ± 1 ) . 

The last trace in Eq. (A.9) is easy to calculate; 
subsequent substitution into Eq. (A.l) yields all 
possible distributions and correlations in the de­
cay of a hyperon. However, for our purposes, it 
is not necessary to write out the general expres­
sion since L'N = 0 and the last trace vanishes in 
all cases, except Eqs. (11) to (14). In the case 
when ~N ~ 0 the calculation is carried out in the 
coordinate system in which Py = PN• i.e., Pe = 
- Pv· In that case the last term of Eq. (A.9) after 
integration over the directions of Pe reduces to 

It is easy to see that (no summation over fJ.) 

(A.11) 

Introducing Eqs. (A.11) and (A.8) into Eq. (A.lO) 
gives 

(EeEv- 1la p~) [(C~(;) (PNP;) - (C:V p;)(pNC;J], (A.12) 

where * indicates that the purely imaginary fourth 
component of the given vector should be taken with 
the opposite sign. 

The averaging over the directions of Pe in the 
remaining terms of Eq. (A.9), as well as the analo­
gous integration over the directions of PN in the 
case when electron polarization is studied, is ele­
mentary; after this Eq. (A.9) is expressed in terms 
of Pi> Ei and the unchanged vectors L'i. The re­
sultant expression is substituted into Eq. (A.l) and 
the expressions (11) to (18) are obtained after a 
Lorentz transformation to the frame Py = 0 is 
performed. 

We note that rule (10) for the interchange of 
electron and neutrino follows directly from Eqs. 
(A.9) and (A.6). In the most general case, when 
L'N ~ 0, . rule (10) should be amplified to include 
the condition L'N - - L'N· 
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APPENDIX B 

Universal Four-Fermion Interactions with 
Parity Nonconservation 

As is well known, 6 five types of parity con­
serving interactions exist, universal in a nar­
rower sense than that used in reference 1. The 
universality is defined by the condition that in 
going from the ordering 

Hint= ~gf (~20i1h) (~a0iifi4) (A.13) 
I 

to the ordering 

Hint= Ldi (f20iifl4) (!flaOiifii) 
j 

(A.14) 

one should have fj = pgj for all j (with the same 
p = ±1). The indices 1, 2, 3, 4 refer to the par­
ticles participating in the reaction, which need not 
be the decay of the particle labeled 1. One has 
p = + 1 for the covariants V-A, S + P - T and 
2 ( S - P ) - ( A + V), whereas p = - 1 for 
2 ( S - P ) + ( A + V ) and 3 ( S + P ) + T. It is 
easy to show, by the method of reference 7, that 
these interactions are also universal for the co­
variants with the primed constants, however then 
2 ( S ~ P ) - (A + V ) has p = - 1 and 2 ( S - p ) 
+ (A + V) has p = + 1. Consequently, when both 
Cj and Cj are nonzero, the last two combinations 
of covariants are no longer universal. Of the re­
maining three, 3 ( S + P ) + T corresponds to 
p = - 1 and, apparently, contradicts experimental 
data. For example, the Michel parameter deter­
mining the energy spectrum in J1. -decay comes 
out equal to 0.25 whereas the experiment gives 
0.68 ± 0.02. 

The V-A and S + P - T covariants both have 
p = 1. They give similar results in the calcula­
tion of various processes and one may give a 
simple rule for going over from one to the other. 

It is shown in reference 1 that the interaction 
corresponding in the notation of Lee and Yangs to 

Cv = c~ =- cA =- c~- G 1 V2. 
Cs = c~ = cjJ = c~ = cT = C'T = o, (A.15) 

may be brought into the form 

Hint= 4 V8G [(cp;'f'I) (tp;'P4)- (<p;Cl'?r) ('?;"'?4)], (A.16) 

where 

(A.17) 

In turn, the interaction 

Cs = -C~ = CI' = -C~ = -CT = C'T=G JV2, 
, , (A 18) 

Cv=Cv=CA=CA=O · 

(the relative sign of C and C' is here different 
than in the V-A covariant to give electron polar­
ization correctly in normal f3 decay) leads to 

Hint= 4 VSG [(?;?:) (cp;cp~)- (tp:a:p;) (tp;ccp~)], (A.19) 

where 
?: '= 1/2 (v;- w1). (A.20) 

Consequently the transition from V - A to 
S + P - T requires the replacement of cp 1 and 
CfJ4 by cp1 and cp( i.e. a change in sign of w1 

and w4. Since wi=a·pivi/(Ei+mi) thisim­
plies changing of the sign of p1 and p4 in the 
matrix element. On the other hand, the sign of 
the momentum does not change in the conserva­
tion laws for free particles or in the exp { i ( Pe + 
Pv) · r} in forbidden transitions for the f3 decay. 
However, as can be seen from Eq. (A.9) for free 
particles, when ~ = 0 and T/ = -/2 G, the square 
of the matrix element contains the variables of 
the first and fourth particle only in the combina­
tion ( t1t4 ), for which the sign change of p1 and 
p4 is equivalent to a sign change of t 1 and t4 
with unchanged Pt and p4• Consequently, for 
free particles, the transition from Eq. (A.15) to 
(A.18) is accomplished by 

(A.21) 

Precisely such a sign change for t 1 was noted 
in reference 4 in the discussion of J1. -meson decay. 

In the case of f3 decay, particles 1 and 4 are 
the neutron ( n ) and antineutrino ( v ) . The change 
in sign of p1 ~s equivalent to the introduction of 
the additional matrix {3 = y 4 into the nuclear ma­
trix element. For the neutrino we have wv = 
U•nvvv (nv = Pvll Pv I), and strictly speaking it 
is nv and not Pv that changes sign. The quan­
tity that enters into exp { i ( Pe + Pv) • r} is Pv = 
I Pv I nv. In order that Pv remain unchanged we 
must require that I Pv I change sign along with nv. 
Consequently the transition from Eq. (A.15) to 
(A.18) is accomplished, in the case of {3 decay, 
by 

~o-~o~. n"->--n.,, !p.,I--IP"l· (A.22) 

This leads to a different sign in the {3-v corre­
lation in allowed transitions and to a change in the 
energy spectrum in forbidden transitions. Both 
these phenomena are well known (see, e.g., ref­
erence 9). 
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A method is proposed for finding the degeneracy caused by magnetic symmetry. The method 
is used to examine the nature of the splitting of atomic terms in a magnetic crystal for all 
cases of magnetic symmetry, under the assumption that the total angular momentum of the 
atom is integral. The results are compared with the splitting of atomic terms in a nonmag­
netic crystal. It is found that the magnetic interaction in the crystal does not always remove 
the degeneracy of the atomic energy levels completely. It is shown that the results obtained 
are applicable to finding the splitting of terms of an atom in a nonmagnetic crystal which is 
placed in a magnetic field. 

l. The field due to the other atoms of the crystal 
acts on an atom located in a crystal. This field 
has a definite symmetry which depends on both 
the crystal symmetry and on the position of the 
atom under consideration. The symmetry of the 
crystal field is a subgroup of the symmetry class 
of the crystal. The crystalline field can be treated 
as a perturbation which splits the energy levels of 
the unperturbed atom. This splitting is completely 
dependent on the symmetry of the crystal field at 
the point where the atom is located. 

The question of splitting of atomic terms under 
the action of the crystalline field was treated by 
Bethe.1 If we assume that the perturbation due to 
the crystal field is so small that the spin-orbit 
coupling in the atom is not broken down, we can 
start from a state of the free atom which is given 
by its total angular momentum J and its parity. 
Under the influence of the crystal field, the sym­
metry of the atom is reduced, which leads to par­
tial or complete lifting of the degeneracy of the 

atomic state. To find this splitting we must ex­
pand the irreducible representation of the sym­
metry group of the free atom in irreducible rep­
resentations of the symmetry group of the crystal 
field. The irreducible representation of the sym­
metry group of the free atom ( spherical symme­
try) gives the term of the unperturbed atom, while 
the irreducible representations of the symmetry 
group of the crystal field which are found in the 
expansion give the components in the splitting of 
the term. 

We must however make one important reserva­
tion. The free atom is symmetric under time in­
version. If the crystal field is purely electric, it 
is also symmetric under the time inversion R. 
Then the perturbed atom must also possess this 
symmatry. One might think that the symmetry 
with respect to R could be taken into account in 
the usual scheme of expansion in irreducible rep­
resentations by assuming that the symmetry group 
of the crystal field also includes the time inver-


