
SOVIET PHYSICS JETP VOLUME 35(8), NUMBER 2 FEBRUARY, 1959 

GENERALIZED SELF-CONSISTENT FIELD EQUATIONS 

P. S. ZYRIANOV 

Ural' Polytechnic Institute 

Submitted to JETP editor March 19, 1958; resubmitted April 24, 1958 

J. Exptl. Theoret. Phys. (U.S.S.R.) 35, 448-451 (August, 1958) 

The Hartree equations generalized to the case of nonstationary states are modified to incor­
porate processes of scattering of particles at small distances as a sort of momentum inter­
action. The relation of these equations to the theories of Landau and Silin is shown. On the 
basis of the generalized equations, dispersion relations are found for Fermi and Bose sys­
tems of interacting particles. 

IN systems of interacting particles, the density 
fluctuations can be divided conditionally into 
"coarse-grained" and "fine-grained" fluctuations. 1 

This separation is related to the approximate meth­
ods of description of the sole actually occurring 
fluctuations. In condensed systems, the "coarse­
grained" fluctuations describe density changes 
over regions of space with linear dimensions 
which are appreciably greater than the distance 
between particles, while the changes in number 
density of particles over space regions of dimen­
sions comparable with or smaller than the aver­
age distance between particles are described by 
the "fine-grained" fluctuations. The "coarse­
grained" fluctuations, in which the properties of 
the system manifest th,emselves as if it were a 
continuous medium, can be described by means 
of the Hartree self-consistent field. This field 
contains the effect of long range fo.rce correla­
tions in the system. 

The self-consistent field is too poor an approx­
imation to describe the "fine-grained" fluctua­
tions. This is due primarily to the large fluctua­
tions of the actual (but not of the average) field 
at small distances, even for the case of a spa­
tially uniform density. Processes of interaction 
of particles at small distances have rather the 
character of collisions, and they are to be de­
scribed preferably in terms of a scattering prob­
lem. Here the fundamental quantity is the scat­
tering amplitude, which depends on the potential 
of the interaction between the particles and on 
their momenta. If we neglect the effect of the 
self-consistent Hartree field on the scattering 
processes at small distances, the scattering 
amplitude will be independent of the spatial co­
ordinates. This statement is equivalent to neg­
lecting the interaction between the "coarse-

grained" and "fine-grained~ fluctuations. 
The interaction energy of the particles at small 

distances can then be assumed to be some function 
of the scattering amplitude. In the simplest case 
of small scattering amplitudes, this function can 
be expanded in series and one can limit oneself to 
the linear approximation; the interaction energy 
will then be proportional to the scattering ampli­
tude. In general the interaction at small distances 
can be regarded as a sort of momentum interaction, 
and the scattering amplitude or some function of it 
as the operator of this interaction. 

As will be clear from the sequel, such inter­
actions describe the force correlations over small 
distances. The momentum interactions described 
above can be included in the Hartree equations 
generalized-to the case of nonstationary states,2 

and can be expressed in the following form: 

where 
<I> (p, p'•; q, x') = 1/2 [o (x'- q) F ( p- p'*[) 

+ F (lp -p,.I)B(x'- q)J, 

F ( I p I ) is some function of the scattering ampli-
tude. 

One can establish the relation of these equa­
tions to the Landau equation for a Fermi liquid3 

and with the equation for a degenerate electron 
fluid which was obtained by Silin1 as a generali­
zation of the work of Landau, as well as with the 
Hartree-Fock equations. 

A more complete and consistent description of 
fluctuations, not assuming a separation of the flue-
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tuations into "coarse and fine grained", should 
start from a single interaction kernel depending 
on coordinates as well as momenta of the inter­
acting particles. In Eq. (1) the interaction kernel 
is a sum of coordinate and momentum interactions. 
This is the cause of the formal division of the 
fluctuations into two types. 

1. To establish the connection of (1) with the 
Landau and Silin equations, which arise from (1) 
as a quasi-classical approximation in the limit 
n- 0, we introduce the density matrix 

(2) 

For the case of particles with spin, the spin coor­
dinates may be assumed to be contained in q. 

Using (1), we can find the equation of motion for 
p ( q, q'). TJo•is equation has the following form: 

ihp' (q, q') = {- (tt2 12m) (o2 1 aq2 - a2 1 oq' 2 ) 

+ ~ dx' [G (! q- x' [) 

-G(jq'-x'l)lp(x', x') (3) 

+ ~ dx" dx'o (x'- x") <D (q, x'; p, p'*) p (x", x') 

-~dx"dx'o(x"-x')<D(q', x'; p, p")p(x', x")}p(q, q'). 

We can go over from this equation to the equa­
tion of motion for the quantum distribution function 
f(p, q), which is related to p(q, q') by the well 
known relation5 

ts,s' (p, q) = <Z~J" ~? (q- h't I 2; q + tt't I 2) e-i<~ d-:, (4) 

where s and s' are spin indices. We can intro­
duce a distribution function f (p, q) which is in­
dependent of the spin indices: 

f(p, q) = ~fss(p, q). (5) 

If we assume that the magnetization of the sys­
t~m is equal to zero and neglect fluctuations of the 
spin density in phase space, we can obtain the fol­
lowing quantum-kinetic equation for f (p, q) by 
using Eq. (3): 

-:: + : ~~ - (Z7t~ 3 1i ~ dx' dp' dp" d't [G (I x'- q + n't I 21) 

- G (I x'- q- t,'t I 21)] ((p', x') f (p", q) exp {i't (p" -- p)} 

- (Z7t~3 1i ~ dx d't dp' dp" F (I xI) {f (p', q + (n't I 2)- nx. I 2) 

X f(p", q-nxl2)-f(p', q-(n'tl2)+hxj2) (6) 

X f (p", q + nx 12)} exp {ix (p"- p') + i't (p"- p)}. 

Making the limiting transition n- 0 in (6), we 
obtain the quasi-classical kinetic equation in the 
following form: 

at a a 
7ft+ aq(v, f)+ ap (P, f)= 0, 

v = as 1 ap, P = -as 1 aq; 

z (p, q) = 2~ + ~ F (I p- p' I) at ~~~q) dp' 

+ ~ G (i q- x' I) f (p', x') dx' dp'. 

(7) 

(8) 

If we neglect the last term in (8), which de­
scribes the energy of interaction of the particle 
with the Hartree field, we get a kinetic equation 
analogous to the corresponding equation in refer­
ence 3. 

The function E ( p, q) is the energy of the par­
ticle in the self-consistent Hartree field, including 
scattering processes at small distances which de­
scribe force correlations of small range; v and P 
can be treated as the velocity and the self-consist­
ent force, respectively. 

We note that Eq. (7), though it is a quasi-clas­
sical approximation, contains exchange effects or, 
in other words, takes account of the symmetry of 
the wave function of the initial system. Actually 
the initial equations (1), from which (7) was ob­
tained, go over into the Hartree-Fock equations 
if we set 

(8a) 

where G ( I r I ) is the interaction potential between 
the particles in vacuum. 

2. To find the energy spectrum of low excited 
states of a system of interacting particles, it is 
preferable to use Eq. (1) rather than (7). The 
point is that (1) contains quantum effects which 
are essential for Bose systems near the ground 
state (at absolute zero), while the equations of 
(7) no longer contain them since they are obtained 
in the limit n- 0. 

A procedure for finding dispersion equations 
for the states of a system which are close to a 
homogeneous, isotropic distribution of particles 
in coordinate space and chaotic in the velocities 
was given briefly in reference 2. We shall follow 
this procedure. 

Let us represent the function 1/Jj ( x) as 

~~ (x, t) = ri' (x, t) exp {(i 1 n) s1 (x, t)}. (9) 

Substituting (9) in (1), we get a system of equa­
tions for the functions Pj, Sj. Since the state of 
the system with constant density, Pj = const, is 
an exact solution, the nonlinear system of equa­
tions for the functions Pj and Sj can be linear­
ized in the neighborhood of this exact solution with 
Pj = const. 

If we look for a solution of the linear equations 
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for Pj and Sj in the form of a superposition of 
plane traveling waves with frequency w and wave 
vector k, we find the following dispersion equa­
tion for Bose systems: 

w2 = (k2 I m*) < N oo· (k) + t.2k2 I 4m* ); (10) 

Here G* ( k) = G ( k) + ! [ F ( tik) + F ( 0 ) ), G ( k) 
is the Fourier component of the interaction kernel, 
F ( x) is the kernel of the momentum interaction, 
and m* is the effective mass which is defined by 
the expression: 

(m*f1 = (1 I m) (1 +(3m I t.2k2 ) [F (t.k)- F (0)]). 

The structure of the energy spectrum (10) of the 
weakly excited states of a Bose system coincides 
in form with the results which were first obtained 
by Bogoliubov, 6 but differs in that the mass of the 
original particles is replaced by their effective 
mass, and that the function ! [ F ( tik) + F ( 0) ), 
which takes account of correlations over small 

where 

distances, is added to the Fourier component of 
the kernel of the interaction between particles. 
If we define F (x) from (8a), Eq. (10) coincides 
with the corresponding result from the Hartree­
Fock equation. 

In the case of perfectly elastic spheres of di­
ameter a, the interaction kernel can be taken in 
the form 

G (I q- x'!) = {ti 2 / ma2) o (I q- x' Ia). (11) 

Then Eq. (10) gives results which are analogous 
to those of Brueckner and Sawada7 (cf. also refer­
ence 8), and in the limit k- 0 with those of Lee 
and Yang. 

In the case of systems of Fermi particles, to 
find the spectrum of collective oscillations we get 
the dispersion equation 

a; (k) = G (k) + 114 ~ [F (i Pi- Pi+ tk !) - F (I Pi- Pi- t.k I) +2F(IPi-Pii)], 

(m;p ={ljm)+(1jh2k2 ) ~ [F(I Pi-Pi+t.k I)+F(I Pi-Pi-hk 1)- 2F(I Pi-Pi I)J, 

kv; = {l%/m)+{l/21i) ~ [F (I Pi- Pi+ hk I)- F (I Pi- Pi- hk i)J, 

and Pj is the momentum of the j -th particle in 
the state with constant density. 

In the case of Coulomb forces, as k- 0 we 
get the following expression for the limiting fre­
quency of plasma oscillations: 

2= 41tNoe2 • 1 = 1 + ~ 2 a2F([Pi-pil) 
wo * , - - L.J- . 

m m* m ii N0 ap~ 

If we define F (I pI) by Eq. (Sa), the dispersion 
equation (12) coincides with the corresponding 
equation obtained from the Hartree-Fock equations. 
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