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sibly a new system of relations, which is valid 
also in the general case. In this connection it is 
interesting to note a paper by Moses, 14 in which 
a formal procedure is developed for the construc
tion of a potential from the known backward scat
tering amplitude for all energies and all directions 
of the incident particles over a hemisphere. Moses 
points out the analogy between these data and the 
reflection coefficient in the case of a uni-dimen
sional barrier. It is of interest to note that these 
data consist of two real functions of the param
eter E and a unit vector describing a hemisphere, 
while the potential depends on the parameter r 
and on a unit vector describing a full sphere. 
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A theory is developed for the energy states of nuclei which have no axial symmetry, and for 
the electromagnetic transitions between these states. It is shown that the breakdown of axial 
symmetry, though it does not appreciably change the rotational states from those for axial 
nuclei, leads to the appearance of new energy states. Comparison of theory with experiment 
shows that the so-called y -vibrational levels of even-even nuclei should be regarded as ro
tational levels. The levels of some nuclei with the spin sequence 0, 2, 2, 3 should be assigned 
to this same type. 

INTRODUCTION 

ON the basis of the uniform nuclear model of A. 
Bohr and Mottelson, 5•6 the present authors have in
vestigated1-4 the energy levels of nonspherical nu
clei corresponding to collective excitations in 
which there is no breakdown of the axial symmetry 
of the nucleus. It was shown that the rotation-vi
bration energy of the collective excited states of 
the nucleus is a function of only two P§Lrameters 
- the frequency of the surface oscillations of the 

nucleus and the ratio of the equilibrium deforma
tion to the amplitude of the zero-point vibrations. 
The question naturally arises as to the extent to 
which these results remain valid when one takes 
account of possible breakdown of axial symmetry 
of the nucleus. 

The question of the breakdown of axial sym
metry of the nucleus has already been discussed 
qualitatively in some papers.5•7•8 Recently it has 
even become customary (cf. for example refer
ences 9 and 10) to assign certain excited nuclear 
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states to the so-called y -vibrations. Such an 
assignment is usually based on the values of the 
spins of the levels and the occurrence of a high 
probability for electromagnetic transitions, which 
confirms the collective nature of the levels. No 
quantitative theory of y vibrations exists. 

In the present paper we investigate the energy 
levels corresponding to rotation of the nucleus 
without change of its internal state. It will be 
shown that, with the breakdown of axial symmetry 
of even-even nuclei, the rotational spectrum cor
responding to the axial nucleus is changed com
paratively little but that new rotational states with 
total angular momentum J = 2, 3, 4 ... appear. 
For small deviations from axial symmetry these 
levels lie very high and are not excited, but with 
increasing deviation from axial symmetry some 
of the additional levels are lowered appreciably. 
So, for example, the ratio of the second excited 
level with spin 2 to the first level, which is also 
present in an axial nucleus, changes from infinity 
to two. The probabilities of electromagnetic tran
sitions between rotational states of nonaxial nuclei 
are calculated in Sec. 2. From a comparison of 
the theory with experimental data (Sec. 3) one 
can conclude that the properties of the experimen
tally observed energy states of even-even nuclei 
are satisfactorily explained if one assumes that 
these nuclei do not have axial symmetry. 

1. ROTATIONAL LEVELS OF NONSPHERICAL 
EVEN-EVEN NUCLEI 

On the basis of the uniform model, let us con
sider the nuclear levels corresponding to rotation 
of the nucleus as a whole without change of its in
ternal state. The operator for the rotational en
ergy of the nucleus has the form 

A ~ J~ (1.1) 
H = T ~ sin2 (y- 21tA I 3) ' 

/.=1 

where A= ti2/4B~ is a quantity having the dimen
sions of an energy; y varies between 0 and rr/3 
and determines the deviation of the shape of the 
nucleus from axial symmetry; the JA. are the op
erators for the projections of the angular momen
tum of the nucleus on the axes of a coordinate sys
tem fixed in the nucleus. The commutation rules 
for these operators differ from those for the cor
responding operators relative to a fixed coordinate 
system by a change in sign of their right-hand side. 

According to (1.1), for y .,.c 0 or rr/3 the nu
cleus should be treated as an asymmetric top. In 
the stationary states of the asymmetric top, none 
of the projections of the total angular momentum 

on the axes 1, 2, 3 of the coordinate system fixed 
in the nucleus can have definite values, so that the 
energy levels cannot be classified by means of the 
value of K = J 3• In the asymmetric top there are 
2J + 1 different energy levels for each value of 
the total angular momentum. These levels can 
be classified in terms of the irreducible repre
sentations of the group D2 (with symmetry ele
ments c~. c~. c~. corresponding to rotation 
through 1r around each of the coordinate axes 
1, 2, 3 ), since the operator (1.1)· and the com
mutation relations of the JA. are invariant under 
this group of transformations. Thus the energy 
levels of the asymmetric top split into four types, 
corresponding to the four irreducible representa
tions of the group D2 (cf. reference 11, § 101, 
and reference 12). 

In the case of even -even nuclei, of the 2J + 1 
different energy levels with given J, only those 
can occur which correspond to the completely 
symmetric representation of D2• For J = 1, 
there are no rotational levels of the required sym
metry. For J = 2 there are two such states, 
there is one for J = 3, three for J = 4, two for 
J = 5, four for J = 6, etc. 

If we express the energy in units of A, the 
energies of the two states that have the required 
symmetry for J = :2. are given by 

s (2) _ 9 (1- Y1- s;. sin 2 3y) 
I - sin2 3y ' 

c ( 2) _ 9 (1 + V 1-8j9 sin2 3y) 
~2 - sin2 3y 

The energy levels with angular momentum 
are given by the formula 

3 

z (3) = ~ 2/sin2 ( y- 2
31t A.)= 18/ sin2 3y. 

'-=1 

(1.2) 

J=3 

(1.3) 

The three energy levels with spin 4 are determined 
by the roots of the cubic equation 

ea- . ~03 e: 2 + . ~83 [27 + 26 sin2 3y] e: sm y sm y 

- . 6~03 [27 + 7 sin2 3y] = 0. sm y 

The two energy levels with spin 5 are given by 

s, (5) = [45 + 9 V 9-8 sin2 3y]/ sin2 3y. (1.4) 

In (1.4), T = 1 for the minus sign on the square 
root and T = 2 for the plus sign. The energy of 
the rotational states with angular momentum equal 
to six is determined from the solution of a quartic 
equation which we shall not give here. 

From (1.2) and (1.3) we get the simple relation 

€1 (2) + E2 (2) = 8 (3), (1.5) 
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which relates the energies of the levels with spins 
2 and 3. 

The energy levels of even-even nuclei, calcu
lated on the basis of these formulas, are shown in 
the figure as functions of the parameter y. For 
y = 0, the energy spectrum coincides with that for 
an axially symmetric nucleus. For fixed /3, the 
breakdown of the axial symmetry leads to an in
crease in energy of the levels which occur in the 
axial nucleus. This increase in energy corresponds 
to a reduction of the effective nuclear momentum 
of inertia or the effective deformation parameter 
f3eff. For the first excited state with spin 2, the 
effective deformation parameter can be defined by 
the formula 

( 4 sin2 3y )'I• 
~eff = ~ 9- V 81 - 72 siu2 3y . 

In addition to the comparatively small change 
in energy of those levels which occur in axially 
symmetric nuclei, the breakdown of axial sym
metry results in the appearance of new energy 
levels E2 (2), E(3), E2 (4), .... Byusingthe 
dependence of E2 ( 2 )/Ed 2 ) on y, one can from 
the experimental value of this ratio determine the 
appropriate value of y. 

Then we can use the figure to determine the 
sequence of spins and energies of the other col
lective levels of the nucleus. Comparison of the 
theory with experimental data will be made in 
Sec. 3. 

2. ELECTROMAGNETIC TRANSITIONS BETWEEN 
ROTATIONAL STATES OF NUCLEI 

It is well known that measurements of proba
bilities of transitions between nuclear states en
ables one to obtain valuable information concerning 
the nature of the excited states. In particular, to 
clarify the nature of the second excited 2+ state 
in even-even nuclei, one can study the relative 

probability of transitions from this level directly 
to the ground state ( o+) and to the first excited 
2+ state. It has been assumed in various papers 
that the first two experimentally observed levels 
with spin 2 correspond to one-phonon and two
phonon oscillation of the nuclear surface. Then 
the transition from the second spin 2 level to the 
ground state can occur only because of breakdown 
of the oscillator approximation. However no one 
has as yet succeeded in giving a quantitative es
timate of this effect. 

Starting from the assumption that both of the 
spin-2 levels are to be assigned as rotational 
levels, we shall calculate the ratio of the reduced 
probabilities for the transitions E2 ( 2)- E1 ( 2) 
and E2 ( 2 ) - E ( 0 ) as a function of the parameter 
y and, consequently, as a function of the ratio 
E2 ( 2 )/ E 1 ( 2 ) , since the latter depends on y. 

To calculate the probability of E2 transitions 
between rotational states we must express the nu
clear quadrupole moment operator 

z 
Q2tL = 2e V 4r- /5 ~ r7 Y 2tL (&;<pt) 

i=l 

in terms of the Euler angles which determine the 
orientation of the nucleus and the collective co
ordinates measured relative to axes fixed in the 
nucleus. Making use of the transformation 

Y 21" (&<p) = ~ D~,v (0) Y 2v (&' tp') 

of the spherical functions when we go to a coordi
nate system fixed in the nucleus, and expressing 
the proton coordinates r, 8i, C,Oi in this system 
(assuming that they are uniformly distributed 
inside the nucleus ) in terms of collective coor
dinates av, where 

a0 =~cosy, a1 = a:..1 = 0, a2 = a_2 = / 2 sin y, 

we can use the formula 

to obtain the following expression for the J1. -th 
component of the electric quadrupole-moment 
operator: 

A Q (D2 1 D2 2 • ) Q21" = e 0 tJ.Ocosy + v·2 ( fl2+ Dp.,-2) SID y ' (2.1) 

where 

(2.2) 

is the intrinsic quadrupole moment of an axial nu
cleus with deformation parameter f3; D~v are 
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generalized spherical functions, dependent on the 
Euler angles, determine the unitary transforma
tion from the coordinate system fixed in space to 
the coordinate system fixed in the nucleus. 

The wave functions of the rotational states of 
the nonaxial nucleus which we want can be written 
in the form 

where cp ( {3y) is a function describing the ihternal 
state of the nucleus, which is assumed to be the 
same in all three rotational states; 

a1N 1 =- [1/9- 8sin2 3y +sin ysin 3y + 3cosycos3y], 

b1N1 = 3sinycos3y-cosysin3y, 

Ni = 2 V9- 8 sin2 3y [V9- 8 sin2 3y 

+sin ysin 3y + 3 cosy cos 3y], (2.4) 

a2N2 = yg- 8 sin 2 3y- sin ysin 3y- 3 cosy cos 3y, 

b2N 2 = 3sinycos3y-cosysin3y, 

N~ = 2 V9- 8 sin2 3y fV9 -- 8 sin2 3y-

- sin ysin 3y- 3 cos ycos 3y]. 

As already mentioned, y varies between the 
limits 0 and n/3 and determines the deviation 
of the nucleus from axial symmetry. The axes of 
the ellipsoid by means of which the shape of the 
nucleus is approximated are expressed in terms 
of y by means of the formulas 

R~. =R[1 +~V5/47rcos(y-27rf-/3)], f-= 1,2,3. 

For y = 0, the nucleus is a prolate ellipsoid of 
rotation with symmetry axis along 3. For y = 
n/3, the nucleus is an oblate ellipsoid with sym
metry axis along 2. The rotational states as de
termined by the operator (1.1), and the probabili
ties of electromagnetic transitions between them 
are the same for values of y equal to y1 and 
rr/3 - y 1• We therefore give all quantities only 
in the interval 0 :s y :s rr/6. 

In connection with the above, it should be re
marked that the measurement of energies of ro
tational states and of electromagnetic transitions 
between them cannot give any indication as to 
whether the nucleus is a prolate or an oblate 
ellipsoid. The ;mswer to this question could be 
obtained by measurement of average values of 
electric quadrupole moments in stationary states 
(J; M = J). In even-even nuclei, the average 
values of electric quadrupole moments in the 
ground state ( J = 0) are zero. In the first ex-

cited state with spin 2 the average value of the 
quadrupole moment is 

Ql =- Q0 6 cos3y !7 V9- 8sin2 3y, 

where Q0 is defined in (2.2). The average elec
tric quadrupole moment of the second excited 
state with spin 2 has the opposite sign: Q2 =-Qt. 

The reduced probability for an electric quad
rupole transition ( JT)- ( J'T'), averaged over 
initial states of polarization of the nucleus, is 

B(E2;h:->J'-r.')= 16 1t(2
5J+i) ~ \(J'm-r.'IQ 2r.tjJM-r.)\ 2 • 

M,m,r.< (2.5) 
Since we are assuming that there is no change in 
the internal state of the nucleus in the transition, 
the reduced transition probability can be expressed 
in terms of average values of {3 and y in the 
state cp({3, y). Substituting (2.3) in (2.5) and using 
(2.4), we find the following values for the reduced 
probabilities of electric quadrupole transitions, 
expressed in units of e2QV16rr which is the re
duced probability for electric quadrupole transi
tion in an axially symmetric nucleus between ro
tational states with spins 2 and 0: 

b(£ 2. 21 -i>O)= B(£2;21-+0) =-~[ 1 + 3-2sin•3y J; 
' (e2 Qg;161r) 2 Y9-8sin2 3y 

(2.6) 

b(2E; 22---+0) = -~-[1 3-2 sin2 3 y J . 
V9-'!sin2 3y' 

(2.7) 

. (£ 2 ,- 0 21 ) 10 sin2 3y 
0 . ; .i.~---+ = ·-r 9- 8 sin 2 3 y ' 

(2.8) 

In Table I we give, for several values of y, 
the ratio E2 ( 2 )/ E 1 ( 2), the values of the reduced 
probabilities of the transitions (2.6) to (2.8) and 
the ratio of the reduced probabilities of the elec
tric quadrupole transitions b ( E2; 22-21 )/ 
b ( E2; 22-0). From the data of Table I it follows 
that with the breakdown of axial symmetry of the 
nucleus, the reduced probability of the transition 
from the first excited level to the ground state 
changes little. The reduced probability (2. 7) of 
the transition from the second excited level with 
spin 2 directly to the ground state is equal to zero 
for y = 0 and 30°, and for y = 15- 24° amounts 
to approximately 5 to 7% of the probability of the 
corresponding transition between the first excited 
state and the ground state. The reduced probabil
ity of the E2 transition from the second excited 
state with spin 2 to the first excited level is very 
small for y ~ 0, but it then increases rapidly and 
in the region of y "' 20° it amounts to approxi
mately 40%, in the region y "' 30° to approximately 
140% of the reduced probability of the ground state 
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TABLE I 

'Yo 
s2(2) 

b (F2; 21- 0) b (F2; 22- 0) b (£2; 22- 21) b (£2; 22 - 2!) 
z,(2) b (£2, 22- 0) 

0 = 1.000 
5 G4.2 0.993 

10 15.9 0.972 
15 6.85 0.947 
20 3.73 0.933 
22.5 2.93 0.937 
24 2.59 0.948 
25 2.41 0.955 
26 2.26 0.968 
28 2.07 0.99 
29 2.01 0.996 
30 2.00 1.000 

-----·-~ 

transition in the axial nucleus. 
Especially interesting is the ratio of the reduced 

probabilities b ( E2; 22-21 )/b ( E2; 22-0 ), since 
this quantity is independent of the occupation of the 
level € 2 ( 2) and can be measured directly. 

Using the explicit form of the wave function for 
the level with energy € ( 3 ), 

V-- 3 3 
~3ml = 7/ 16 1t2<p (~y) [Dm2- Dm,-2], 

we can calculate the reduced probabilities (in our 
units) of the electric quadrupole transitions 

b(2 £; 3--+22) = -~(1 + 3-2sin'3y ) , 
28 Y9-8sin2 3y 

b(2E;3-+21)=~(1- 3 - 2 sin' 31 )· 
28 Y9-8sin2 3y 

The values of these probabilities and their ratio 
are given in Table II. 

TABLE II 

y• b (£2: 3- 21) b (£2; 3- 22) 
b (£2; 3- 21) 
b (E2; 3 -22) 

10 0.0132 1. 77 0,0075 
15 0.095 1.69 0.056 
20 0.12 1.67 0,072 
25 o:o79 1:1o 0.044 
29 0,0696 1.72 0.039 
30 0 1.78 0 

0 0 1.43 
0.0074 0.011 1.4(1 
0.028 0.051 1. 70 
0.053 0,143 2. 70 
0.067 0.357 5.35 
0.0625 0.563 9:02 
0.052 0.782 15.1 
0,0425 0.865 20.6 
0.0324 1.01 31.2 
0.010 1.28 126 
0.004 1.41 363 
0.000 1.43 ro 

3. COMPARISON WITH EXPERIMENT 

The results obtained in the preceding sections 
are based on the assumption that the internal state 
of the nucleus is not changed during its rotation. 
This assumption can be satisfied only approximately, 
the better the farther the rotational levels are from 
those levels (with the same J, parity, etc) corre
sponding to excitation of the internal state of the 
nucleus. 

In Table III we give experimental data on the 
ratio of the energy of the second level with spin 2 
to the first. This ratio enables us to calculate the 
value of the parameter y using formulas (1.2). 
Using this value of y, we can calculate the ratio 
N = b ( E2; 22-21 )/b ( E2; 22-0) from (2. 7) and 
(2.8). Comparison of these ratios with the experi
mentally observed values (column 7) shows that 
the theory gives a good description of the experi
mentally-observed marked change in the ratio of 
reduced probabilities when we go from one nu
cleus to another. Comparison of the experimental 
values of the sum of the energies of the two 2+ 
levels with the energy of the 3+ level. as we see 
from comparison of columns 4 and 5 of Table III, 
confirms the identity (1.5) which is demanded by 
the theory to within 1% for all elements except 
Cd114 , where a deviation of 5% is observed. In 

TABLE III 

Exper. (kev) I N Refer-.,(2) 
Nucleus <,(2) 

y• 

I [Theoret. I <,(2) + <,(2) • (3) Exptl. ence 

Ptu• 1,94 30 929 920,9 = 163 (13] 
xe••s 2.0 30 1445 - = 197 ["] 
Cd114 2.17 26,75 1771 1860 78 77.9 r••J 
Se76 2:2 26.6 1760 - 68 23.5 P"l 

Te122 2.25 26:5 1760 - 66 78.2 [•'] 
Gd••4 8:21 13,7 1133 1140 2.0 - [18] 
w••• 8.08 13.9 1000 1000 2.0 - [1•] 
sm•s• 8.9 13.48 1206 1226 1.9 1.7 (18, 22) 
oy••o 11 12.2 1051 1047 1,9 2.38 P"J w••• 12,1 11.6 1322 1331 1.6 1,59 ['") 
Pu•ss 23A 8.13 1074 1076 1.2 1.3-1.5 (19, 23) 
Pu240 23,7 s:o 1063 1060 1,2 - (I•] 
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the case of Cd114 , in the region of the second ex
cited 2+ level there are still three nearby levels 
4+, o+, 2+, which may have an effect. From the 
figure we see that for y < 21.5°, the second ex
cited spin-2 level should lie above the 4+ level, 
while it lies below for y > 21.5°. The spin-3 
level should always lie higher than the 4 + level. 
These rules are satisfied for all those nuclei of 
Table III for which the positions of the levels with 
spins 2+, 4+, and a+ are known. 

It is interesting to note that for 'Y = 30° the 
theory leads to equal separations between the 
levels e:t(2), e:2 (2), e:(3). Such an arrange
ment of levels also follows from the oscillator 
approximation for the energy of the surface oscil
lations. It is true that in the latter case the levels 
e:2 ( 2) and e: ( 3) should be degenerate with spin 
values 0, 2, 4, and 0, 2, 3, 4, 6, respectively. 

Unfortunately there is little experimental in
formation from which one could determine the 
ratio b(E2; 3-21)/b(E2; 3-22). This ratio is 
known only for Kr82 and is equal to 0.01621 , which 
corresponds to a value of y a little greater than 
29°. The value y "' 30° is in agreement with the 
observed value of e:2 ( 2 )/e:1 ( 2) = 1.9 if we as
sume that the adiabatic conditions are broken down 
in this nucleus. 

Thus a comparison of the results of the theory 
with the known experimental data confirm the as
sumption that certain even-even nuclei do not pos
sess axial symmetry. 

It should be noted that Gursky24 in 1955, using 
a three-dimensional harmonic oscillator model, 
showed that the minimum energy of the nucleons 
corresponds to a nonaxial shape of the nucleus. 
In Fig. 6 of reference 7 the data of Gursky for the 
energy of the nucleons in the nucleus with Z = 55 
and N = 91 are shown as a function of {3 and y. 
From the figure we see that the minimum energy 
corresponds to y = 7.5°. 
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