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To perform the last integration we introduce the cut-off parameter A, and then 

I= (4~)6 ~[lncpA +l-In (0- is)]. (A.8) 
).12).13).23 

Noting that A.12A.13A.23 = - <P and that the terms that do not depend on Kik make no contribution, we get the 
result (20) given in the text. 
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The propagation of a thermal wave from an instantaneous point source in a gas is investigated 
with account of the temperature dependence of the internal energy of the gas. The case when 
the internal energy is associated not only with the matter but also with radiation is considered. 
The range of the radiation is assumed to depend on the temperature in accordance with a power 
law. An approximate method can also be used in the case of an arbitrary dependence of the in
ternal energy and of the heat flux on the temperature. 

LET a quantity of heat Q0 be liberated at a given millions of degrees for air of normal density) it 
initial instant of time within a small volume ( at a is necessary to take into account, in addition to the 
point). Then, if the density of the medium is con- energy of the matter, also the radiation energy, 
stant, and the thermal conductivity and the specific which is proportional to the fourth power of the 
heat are each proportional to the temperature temperature "" bT4• Such a problem is no longer 
raised to a certain power, the problem is a self- self-similar even if the radiation range is expressed 
similar one and its solution can be obtained in by a power of the temperature. Another non-self-
closed form. Such a problem was investigated by similar problem will be one in which the internal 
Zel'dovich and Kompaneets. 1 energy is given by a power of the temperature, 

If a thermal wave propagates in a gas then, be- but the range of radiation is given not by a single 
cause of the high temperature, the molecules of power, but involves two or more terms. 
the gas break up into atoms and the latter are We shall discuss the problem of the propaga-
ionized, and this leads to a temperature depend- tion of a non-self-similar thermal wave by con-
ence of the internal energy of the gas. Calcula- sidering a special case when the internal energy 
tions2•3 show that the internal energy of a gas may is expressed by the following two term formula 
be approximated over a wide range of temperatures 
by a power of the temperature ( "" a TA.). However, 
at very high temperatures ( on the order of several 

E = aTA+bT4 

(here 'b = 4o/ c. c is the velocity of light, a = 

(1) 
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5.67 x 10-5 ergs/cm2 sec deg4 is the Stefan-Boltz- [a]= [Q] /[L] 3 [T]\ [b] = [Q] I [L]3 [T]4, (6) 
mann constant, and a and A are arbitrary), [c0 ] = [QJI[L] [T]" [t], [Q0 ] = [Q]. 
while the mean free path of the radiation depends 
on the temperature in accordance with the power 
law l = l0 Tn. The heat balance equation can be 
written in the form: 

aE (T) co a 2 ark 
-a-t-=----,.:a,' ar· 

k=n+4, C0 = 16crl0 13k. 
(2) 

We present an approximate method of solving 
Eq. (2), based on a number of physical considera
tions. Since the thermal conductivity depends 
strongly on the temperature ( K "' Tk-1 ), then in 
the course of propagation of the thermal wave the 
temperature tends to a uniform distribution more 
rapidly in regions which have undergone greater 
heating, thus forming a "plateau." A sharp varia
tion in the temperature occurs only in the narrow 
zone near the front, which in the first approxima
tion need not be taken into account in the energy 
balance if the temperature of the "plateau" is ex 
pressed in terms of the radius of the wave front 
as follows: 

'f 

Q0 =47t ~ (aT:+bT!)r2dr. (3) 
0 

In order to determine rf ( t ), we shall make 
use of the integral relationship between the mo
ments, which was investigated by Barenblatt. 4 If 
we multiply Eq. (2) by rm ( m = 2, 3, 4 ... ) and 
integrate with respect to r between the limits 
from 0 to rf, taking into account the conditions 
that the heat flux vanishes at the center and at the 
wave front: 

(4) 

we obtain an infinite number of relations which, 
taken together, are equivalent to Eq. (2). The first 
of these relations ( m = 2 ) gives us the law of 
conservation of energy [Eq. (3)], the second ( m = 
3) leads to the additional condition 

'f 'f 

~ ~(aT~+ bT!) r 3dr = 2c0 ~ rT:dr. (5) 
0 0 

In spite of the fact that the remaining equations re
main unsatisfied, we can hope that there will be 
reasonably good agreement between the approxi
mate and the exact solutions, since the tempera
ture behind the wave front varies smoothly and 
monotonically. 

Our problem is characterized by the following 
parameters, whose dimensions are expressed in 
terms of length [ L ] , time [ t ] , temperature [ T ] 
and quantity of heat [ Q] as follows: 

It is not possible to form a dimensionless con
stant from these quantities. The solution has there
fore the important property of similarity. It can be 
recalculated independently for arbitrary values of 
the parameters a, b, c0, and Q0. If we eliminate 
T from (3) and (5) and introduce dimensionless 
variables, we obtain the law of motion of the wave 
front: 

x3 [(_!- ~)''" (-1 ~)4'k] = 1, 
x2 d" + x2 d" ( 7) 

[ 4n: a (a \AJ(4-A)]'f, _ [ 16n:~ (a )(3k-A)/(4-A)]'/o 4 f 
X = 3 Qo b} r' 't - 9aQ~ b Co • 

By denoting x -2 dx/ dT =' p we can easily write 
down the solutions of Eq. (7) in parametric form: 

"= ~ x2 (J.P'fk 3kp;p4/h) dp ' X = (pl.fh + p4Jk)-'l •. 

p 

In those cases when any one of the combinations 

(A -3k) I~. (3A- k- 8) I~. 

(8) 

(where {3 = 12 - 3A) and one of the two ratios 
( 12 - 3k - 2A )/ {3 and ( 4 - 3k )/ {3 are integers 
simultaneously, the integral (8) can be expressed 
in terms of elementary functions. Figure 1 shows 
the dependence of the dimensionless coordinate of 
the wave front x on the time T obtained from the 
solution (8) for A= 1 and k = 4 and 6. From an 
analysis of (7) it follows that the solution of our prob
lem x ( T ) approaches, for small values of T, the 

( (3k-4) )4/(3k-4) 
limiting self-similar solution x1 = 4 T 

( 3k- A ) A/(3k-A) 
while for large T it tends to x2 = A T 

For all values of T, the curve x ( T) lies lower 
than in both self-similar cases (dotted curve in 
Fig. 2 ) . However, the solution x ( T ) practically 
turns out to be close to x1 ( T) as long as the value 
of the quantity x(12-3A)/4 = J.l. is small compared to 
unity. If, for example, we consider J.l. = 0.03 as 
small, then our solution coincides with the curve 
x1 ( T ), so long as x < x 10, x 10 = ( 0.03 )4/(12-311.) 
(if A= 1, x 10 = 0.210). In the case x > x20, when 
we can neglect the quantity x2(3A-12)/A = v com
pared to unity, our solution approaches the other 
self-similar solution x2 ( T) (if we set v = 0.03 
then x20 = 1.475 for A = 1 ). In spite of the fact 
that in terms of dimensionless coordinates the 
zone of the non-self-similar solution is important 
only within the narrow interval x 10 < x < x20, it 
turns out in practice to be the most interesting 
one, since outside this interval the solution (8) 
loses its meaning in a number of cases, owing to 
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the fact that the gas begins moving. The large 
pressure gradients at the wave front, correspond
to the temperature gradients, lead to the forma
tion of a shock wave. After this has occurred the 
energy is transferred by a gas-dynamic mechanism, 
whereby the law of motion of a strong discontinuity 
differs from the law of propagation of a thermal 
wave, and our solution becomes unjustified. 

A strong discontinuity can exist only if small 
perturbations propagated with the speed of sound 
c* ( T) can catch up to the wave front. Since the 
thermal wave is slowed down very sharply, the 
limits of validity of the solution may be found, 
following a remark of A. S. Kompaneets, from 
the physical requirement c* ( T *) = rf. In this 
connection it turns out that, for example, for air 
of normal density, x* < x20 • 

It is interesting to compare the solution of a 
self-similar problem obtained by the method just 
described with the exact solution, which in the case 
A = b = 0 is given by the following formulas: 

fa= (t -~\l/(3k-1) [~J(It-1)/(3k-1); 
a ) 27tay (k) (9) 

[ a k- 1 • ]1/(k-1) 
T = Co -k- 'r'r ['YJ- 0.5'YJ2Jll<k-1), 11 = 1- r I 'r ,; 

[ k -1 ]1/(k-1) ( 3) ( k ) [ ( 3 k )]-1 
y(k) = 2k(3k-1J r 2 r k-1 r 2 + k-1 ; 

where r is the gamma-function. 
For the approximate solution we obtain: 

'o = [t ~0 <12k _ 4>T'(3k-1) [!~~r-·1)/(3k-1). 

T (t) = 3Qo . 
• 47tar~ 

(10) 

Figure 2 gives the temperature distribution for 
A= b = 0 and k = 6, obtained by means of the 
exact solution (9) (solid line) and by the approxi
mate method, on the assumption that there is a 
temperature "plateau" behind the wave front 
(curve 1). The temperature distribution is given 
in dimensionless form in terms of its value T a = 
T ( 0, t), at the center of the self-similar wave, 
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and is shown as a function of the ratio of the co
ordinate r to the radius of the front of the self
similar wave r a ( t). If we compare (9) and (10) 
we find that the approximate solution agrees well 
with the exact one. For k = 6 we have 

r0 /ra = 0.962, T.IT(O, t) = 0.889. 

If we know the law of wave propagation (10) we 
can also find the temperature distribution near the 
front by expanding the solution in powers of 1]: 

T = T1 (11, t) + T2 (11, t) + · · · (11) 

We write Eq. (2) in terms of the variables t and 
1J(r, t): 

a (aT)..+ bT4) + i_ ( 1 _ ) a (aT)..+ bT') 
at 'r 11 a'll 

(12) 2co aTit. c0 a2Th 

, 2 ('1)-1) a:tJ + 7 w· 
f f 

Near the front of the wave ( 11 - 0) the tempera
ture tends to zero, and therefore the main terms 
of Eq. (12) must cancel one another: 

;r.rr.aT~ I a11 = c082T~ 1 a112 • 

This leads to the well known law for the variation 
of temperature near the wave front: 

T _ [ a k- J.. • ]11(1<-)..) _ A li(k-)..) 
1-c;11-k-rfrf -111 • (13) 

For the second term we obtain: 

T2 = A211(o-i.)l(h-)..), A2 = bA~-A I a (4 + k- 21..). (14) 

The series expansion gives the solution as a func
tion of one arbitrary function rf ( t ), which can 
be approximately determined by the method de
scribed earlier. We note that the method of solv
ing the problem for small values of 11 is analogous 
to the method of "short" waves proposed by Khristi
anovich5 for treating a number of gas-dynamic prob
lems that are physically characterized by the fact 
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that an appreciable variation in the parameters of 
the gas occurs only in a narrow zone close to the 
front. 

In the case of a self-similar problem, the first 
two terms of the expansion (11) give good agree
ment with the exact solution over the whole range 
0 :s: TJ :s: 1. The solution obtained by means of such 
an expansion in the case A.= b = 0, k = 6, is given 
by curve 2 of Fig. 2. Therefore the function rf(t) 
may be determined for such problems directly from 
the condition of heat balance: 

1 

Q0 = 4r-aA1 (t) r} ~ ( 1 - 'YJ)2 [ '1)1/(h-1) + 'Y)h/(h-1) ~: + ... J d'YJ. 

0 (15) 

It follows hence that Yo is given by formulas (9), 
in which one should set y ~ y 0: 

=2[· k-1 ]1/(h-1)[4k2-5k+2_ 8k2-11k+4] 
'Yo k (3k - 1) k (3k -2) (2k- 1)' (4k-3) • 

(16) 

This value of Yo agrees well with the exact one. 
Thus, for example, for k = 6 we get y = 0.251 
and Yo= 0.252. 

The approximate method just described may be 
made more precise if, for example, we replace T* 

of Eqs. (3) and (5) with an expression for T which 
takes into account the variation of temperature in 
the zone near the wave front. 

By the method described above we can also in
vestigate the problem arising when both the inter
nal energy and the range of radiation are expressed 
by formulas that contain several terms. 

The author expresses his sincere gratitude to 
A. S. Kompaneets for valuable remarks. 
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