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The production of two 11' mesons in collisions between 11' mesons or 'Y quanta with nucleons 
or deuterons is studied by a phenomenological method for small angles of emission of the 11' 

mesons produced. 

1. Let us consider the reaction 71'+ + p- n + 11'+ + 
11'+ and let us denote the amplitude of that process 
for the pseudopotential given in references 1 and 2 
by A. We have 

V = Ail (rn- r) 'tn· 

where Tn is an operator acting on the isotopic 
variable of the nucleon. 

(1) 

The 11' mesons are pseudoscalar particles. The 
amplitude A, corresponding to the transformation 
of one 11' meson into two 11' mesons in collision 
with nucleons, should therefore be a pseudoscalar. 
In the following, we shall limit ourselves to reac­
tions in which the produced 11' mesons are emitted 
at small angles. The expression Aa, where A = 
ak1 + b~ + ck 0, represents then the only pseudo­
scalar which can be constructed from the given 
ko, k1 , ~ (wave vectors of the incident and the 
produced mesons, respectively) and nucleon spin. 
vector a. In consequence, the amplitude should be 
of the form 

(2) 

where a, b, c are invariant functions of the vec­
tors k0, k1 , k.!·· The differential cross-section for 
the reaction 71'+ + p - n + 11'+ + 11'+ can be expressed 
in terms of the amplitude A of the reaction: 

(3) 

where Eo is the energy of the incident meson. The 
vector A in Eq. (3) has an index p indicating that 
the reaction goes on a proton. 

2. Let us consider the transformation reaction 
of one 11' meson into two in collisions with deuter­
ons. The interaction between the incident 11' me­
son and a deuteron can be described by a pseudo­
potential which is a sum of pseudopotentials (1): 
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V=V(I)+V(2). (4) 

where 1 and 2 denote the coordinates of the first 
and second nucleons in the deuteron. 

The reaction 71'- + d - n + n + 11'- + 11'+. The 
pseudopotential is then 

V = A palo {r1 - r) -ci + Apa2o (r2- r) "i· (5) 

For the differential cross-section of the reac­
tion 71'- + d - n + n + 11'- + 11'+ we obtain (after 
some intermediate calculations): 

da (klk2q) =' I· 2/tt£ ~I Ap 12 {21 /-j2 + I J+ j2} 
"'0 0 .; 

Here q is the momentum of the relativ~ motion 
of produced nucleons and where 

1± = ~ tpt (r) eilc.·r tfio (r) dr. (7) 

In the above integrals cp0 ( r) denotes the coordi­
nate part of the deuteron wave function (we assume 
that the ground state of the deuteron is a S state), 
cp~ ( r) are the symmetric and anti symmetric co­
ordinate parts, respectively, of the wave function 
of the relative motion of two nucleons with relative 
momentum q. We have, furthermore, 

x = 1/2 (k0 - k1 - k2), 

Eo- Ef = V m2 + k~-V m2 + ki- V m2 + k~ (8) 

z2 '!'!. 
-M -- M +z = 0; 

where K2/M and q2/M are, respectively, the en­
ergy of motion of the center of mass of two nucle­
ons and the energy of the relative motion of the 
nucleons, and € is the deuteron binding energy. 
In Eq. (8) the difference between the mass of 
charged and neutral 11' mesons and between the 
mass of protons and neutrons h has been neglected. 
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The reaction 11'- + d- p + n + 11'- + rr0• For the 
pseudopotential we have: 

V = i- {Apa1 (I + '!:~1 )) + Ana1 (I-- '!:~1))} o (r1 - r) 

+-} {Apa2 (I + '!:~2)) + Ana2 (I - '!:~2))} o (r2 - r). 
(9) 

For the differential cross section of the reaction 
rr- + d - p + n + rr- + rr0 we obtain: 

da (krk2q) = ko ~7t£o +<I r I' (21 Ap- An I'+ I Ap + An \2) 

+If+ 12 (2 [ Ap+ An 12 +I Ap- An 12) (10) 

+ (r*r [2 (Ap +An)* (Ap- An)+ (Ap- An)*(Ap + An)l 

) dk, dk, dq 
+compl. conj.)}o(Eo-Ef (Z7t)• (Z7t)" (27t)" • 

The integrals I± ofEq. (10) are given by Eq. (7). 
In the case when the reaction goes without deu­

teron disintegration, i.e., rr- + d- d + rr- + rr0, 

the differential cross section is given by the ex­
pression 

da (krk2) = ko ~~0 f \ Ap + An 1'110 \2 

, (E E ) dk, dk~ 
() 0 - f ' -(27t)• (27t)'l . 

(11) 

where 
l 0 =~tp~(r)ei><rdr, (12) 

E0 -- Ef = Vrm2 + k~-V m2+ ki 

- Vr~'+ k;- x2 I M. Cla) 

3. Let us determine the differential cross sec­
tion du ( k1~ ) , corresponding to a given mom en­
tum of one meson k1 and to a given angle of emis­
sion of the other n2 = k2 /k2 independently from 
the state of the nucleons produced. For that pur­
pose we shall integrate Eq. (6) and (10) over all 
possible values of q. The values of q are deter­
mined by the law of conservation of·energy [Eq. (8)]. 
The integration over dq can be carried out easily 
taking into account that the integrals of I± are 
markedly different from zero only for a small re­
gion of the values of q permitted by the conser­
vation law (8) .1•2 

Taking into account that the functions cp~ ( r ) 
form a complete system, we obtain, approximately, 

For the differential cross-section du ( k1n2 ) for 
the reaction rr + d - n + n + rr' + rr" ( two neutrons 
in the final state) we find 

do (krn,) = ko~~o I Ap 1'( I- 3~tan- 1 ~) 
(E. E),;-(£ E )' z dk, dn, 

X o - 1 v o - r - m (Z1t)" (27t)" • 
(15) 

For the reaction rr + d- p + n + rr' + rr" (a neu­
tron and a proton are present in the final state ) we 
have: 

d~ (k,n,) = ko ~~0 {! Ar 12 + I An J' 

+ 6';c-tan-1 ~ ([ Ap +Ant'- I Ap- An J')} 

X (£0 - Er) Y(£0 - Er)2 - m' (:~~ tz~)• · 

(16) 

A correction to the differential cross sections 
(15) and (16) for the existence of deuterons in the 
D state contributes about 10% to du ( k1n2 ) (the 
correction is less for K « a and for large K). 

4. It is easy to show on the basis of the isotopic­
invariance hypothesis that the amplitudes Ap and 
An ar:e equal and have opposite signs near the 
thresholds of the reactions rr- + p - p + rr- + rr0 

and rr- + n - n + 11'- + rr0, as well as in the pro­
duction of rr mesons with equal momentum k1 = 
k2. 

In fact, the initial state is a superposition of 
states with total isotopic spin T equal to t;2 and 
% . The system of two rr mesons- can be found in 
states with total isotopic spin t equal to 0, 1, and 
2. 

Let us introduce amplitudes A( correspond­
ing to a given value of the isotopic spin of the whole 
system T and a given value of the isotopic spin of 
the produced mesons t. For the amplitude of the 
process of transmutation of one rr meson into two 
rr mesons A ( m 1m2s'; sm) we have the following 
expression 

jm 
where Chmthm2 are the Clebsch-Gordan coeffi-
cients; m, m 11 and m2 are the projections of the· 
isotopic spin of the incident and of the produced rr 
mesons, and s and s' are the projections of the 
isotopic spin of the nucleon in the initial and final 
state. 

The amplitudes A ( m 1m2s'; sm) satisfy the 
following symmetry relations: 

A(m1m2s'; sm)=-A(-m1 -m2 -s'; -s-m), 

A (m1m2s'; sO)=- A (m2m1 - s'; -sO). (18) 

Near the reaction threshold, the rr mesons are 
produced in the s state. Since the wave function 
of the rr meson system would be symmetric with 
respect to a permutation of the mesons, production 
of two rr mesons with t = 1 is forbidden near the 
threshold of the reaction rr + n - n' + rr' + rr" . 3 It 
follows then from Eq. (17) that 
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A similar symmetry relation holds, apart from 
the reaction threshold, when the two 1r mesons 
are produced in course of the considered reactions 
with identical momentum, k1 = k2• 

Taking the above into account we find that the 
differential cross-section for the reaction 7r + d 
- p + n + 1T' + rr" for small angles of emission of 
1r ·mesons and equal momenta k1 = k2 can be writ­
ten in the form 

do (k1k2q) = ko ~~0 -} \ Ap \2{2\f-\2 + If+ \2} 
(20) 

0 E dk1 dk2 dq 
X ( o - E f) (27t)• (27t)' (27t)' . 

For the same conditions the transmutation re­
action of one 1r meson into two without deuteron 
disintegration 1r + d- d + rr' + rr" is forbidden. 

5. The reactions of photoproduction of 1r me­
sons can be treated by an analogous method, using 
a pseudopotential. 2 

The amplitude of photoproduction of two 1r me­
sons should be a scalar. Limiting ourselves to the 
reactions in which the produced 1r mesons are 
emitted at small angles, we shall construct the 
following scalar expression containing klt ~. a, 
and the polarization vector € of the y quantum: 

(21) 

where a1 and a2 are invariant functions of the 
vectors k0, k1, and k2. The expression (21) rep­
resents the most general scalar containing k1, k2 , 

and a, and linear with respect to €. 

The pseudopotential of photoproduction of two 
7r mesons on a nucleon is given by the expression 

V =-[(a,k, + a,k,) x s]oo (rn- r) 'Cn. (22) 

Since Eq. (22) is analogous to Eq. (1), the formulae 
for differential cross sections of photoproduction 
can be obtained directly from the analogous ex­
pressions, (3) to (16). 

For small angles of emission of 1r mesons, the 
momentum of these mesons is approximately per­
pendicular to the polarization vector €. The cross 
sections of the studied processes for unpolarized 
nucleons and deuterons are, therefore, independent 
of the direction of polarization of the y quanta. 

6. We shall determine now the momentum and 
angle distributions of nucleons in the deuteron re­
actions under consideration. 

In formulae (6) and (10) for the differential cross 
sections we eliminated momentum of the center of 
mass of the system consisting of two nucleons by 
using the law of conservation of momentum. It is 
convenient to make use of this law for the elimi­
nation of other variables. 

We shall determine the momentum distribution 
function of the nucleons separately for three differ­
ent specifications of the 1r -meson variable in the 
final state. 

(a) Let the meson momenta k1 and k2 be 
given. Out of six other variables p1, and P2• the 
three variables of the vector p2 are eliminated by 
the momentum-conservation law. The energy­
conservation law yields: 

v m2+ k~- v;;~~k~- v ;,!2+ k~ 
(23) 

- pi/M-2x2/M+2xpd M+o = 0. 

Since K = ( k0 - k1 - k2 )/2 = const, we shall 
choose the z axis as the direction of the vector 
K and integrate, in the differential cross section, 
over the angle variables of the vector p1• 

The integration over the azimuth dq>1 is car­
ried out from 0 to 2rr. The integration over the 
polar angle dJ1 can be carried out easily thanks 
to the existence of the energy o -function. 

We finally obtain for the momentum distribu­
tion function W ( p1, k1, k2 ) of the nucleons in the 
reaction 1r + d - n + n + 1T' + rr" 

where the integrals I± are given by the expres­
sions: 

_ v---( 1 1 ) I = - 4rr~X ---" - ----- , 
r~.2 + P'j_ r~.2 -1-2M~- p~ (25) 

J+ = V4r:IX (_1_ + 1 
\"'2 -1- p~ r~.2-!- 2M~- p~ 

1_- e2iB, [-1_ In r~.2 + (VM~- x'- x)2 
+ 2xVM~-x2 2 r~.2+{VM~-x2+x)2 

+i tan-1 VM~-f-x -itan-1 VM~-x'-x]') 
0( 0( ' 

(26) 

Ll = V m2 + k~- Vm2 +lei - Vm2 + k~. (27) 

(b) The momentum of one meson k1 and the 
direction of emission of the other, n2 = k2 /k2, are 
given. The momentum-conservation law yields: 

-pl-P2 = 0. (28) 

Integrating over the angle variables J1s q> 1, J 2, 

and q>2 of the vectors p1 and p2 we obtain the 
following expression for the distribution function 
W ( PtP2• k1n2): 
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I API" D. Vt..2 - m' 

W (PI P2, ki n,) dpi dp2 dki dD.2k = 3ko I Eo (27t)7 x 

x {21 r 12 + 1 J+ 12} PI P2 dpi dp2 dki dD.2k· (29) 

where C and I+ are expressed in terms of the 
variables p1 and P2: 

I =-V4mx/-----, - - , 1 1 ) 

\oc2 + p~ oc' + p~ (30) 

, 1 - r 1 1 
J+ = v 47toc 1--+ --

\oc'+P~ oc 2 +P~ 

. -1 q + x -1 q-x]\ +ttan -a-·-itan ~-), (31) 

where 

q2 + x2 = Il2 (Pi-+ p~), x = Ilzl ko- ki- n2 V Ll2 - m 2 1, 

(c) Let the momentum k1 of one meson be 
given. It follows from the energy-conversation 
law that 

Vm' + kg - V m2 + ki- V m' + (ko - ki- PI - Pz) 2 

-(Pi + p~)l 2M + s = 0. (32) 

Taking into account that we deal with reactions 
in which fast mesons are emitted at small angles, 
we have, approximately 

V m2 + k~ - V m' -+ ki 

I . ~~ - l m2 + (ko- ki)2- 2 (ko- kiHPI + Pz) = 0. 

The integration over the angular variables of 
the vector p1 can be carried out easily thanks to 
the existence of the energy o -function. Integrat­
ing over the angular variables of the vector p2 
we take it into account that the integrals I± de­
pend on these variables through the variables q 
and K. Since we have 

q2-+ x2 = Il2 (Pi+ p~), 

x = (k0 - ki)-(Pl + Pz) I 21 ko- kii + 0 (p'J k'), 

then the integrals I± contain the variables J-1 
and J-2 in the form p1 cos J-1 + p2 cos J-2 only. 

The result of integration of the differential 
cross-section over O.J.~ depends therefore only 
on p1 and p2. The limits of integration over dJ-2 
are determined by the energy conservation law (33). 

Finally, we obtain for the distribution function 
W(PtP2• kt): 

21Apl 2 E0 -E1 
W (PI P2• kd dpi dp, dk1 = 3k0 1 E0 (27t) 6 1 k0 - k1 I 

X {2] r 12 +I/' ]2 } (Pl + P2- 2x) PIp, dpi dp2 dki. (34) 

In Eq. (34), I± have their previous meanings [cf. 
Eqs. (30) and (31)] and 

x = _1_ (I ko -- ki I -(Eo-- E1)" -- m'). 
4 \ I k0 - k1 1 

We consider now the angular distribution of nu­
cleons in two cases. In the first we assume that 
k1 and ~ are given, and denote the correspond­
ing distribution function by W ( J.l> kl> ~). In the 
second, we assume that k1 and n2 are given, and 
denote the corresponding distribution function by 
W ( J.1J.2, k1n·2 ) · 

(a) Given k1 and ~. we express Eq. (6) in 
terms of kl> ~. and p1. Integrating over dp1 

and d<pl> we obtain the distribution function: 

W (.&I, ki k2) sin .&1 d.& I dki dk 2 

I Ap I' Mpi 

= 3ko I Eo (27t)' (x' cos2 {)1 - 2x2 + Mt..)'l• 
(35) 

X {21 r 12 + I J+ I'} sin .&I d.&I dki dk2. 

where I± are given, as before, by Eqs. (25) and 
(26), and are expressed in terms of J-1• It follows 
from Eq. (23) that 

PI= x cos .&I + V ><2 cos' .&I- 2x2 +Mil. (36) 

(c) Given k1 and n2, we choose the z axis 
in direction of the vector n2. Expressing Pt> p2, 

and the azimuth <p2 of the vector P2 through the 
variables k2, J-1> J-2, <p 1 (using the momentum­
conservation law) and integrating over dk2 we 
find: 

21 A p 12 (£0 - E1 ) Y(£0 - E1) 2 - m2 

= 3k0 I E0 (27t)8 

p~ sin q>1 sin {)1 I sin q>z sin 3 {), (37) 
X j[~~:z x (ko-k,)]jcos q> 2 cot {)2 - n, (k0- k1) 

where I± are given by Eqs. (30) and (31) and are 
expressed in terms of J.l> J-2, and <p 1: 

p2 = -PI sin .&I sin '?I I sin.&, sin cp,, (38) 

n 2 (k0 - ki) - PI cos .&I 

+PI sin .&I sin '?I cos .&2 I sin .&2 sin cp 2 = 0. (39) 

The angle cp2 is determined by the equation 

For [n2 x (k0 - k1 )] = 0, we have <p2 = <p 1 ± 1r. 

For this condition we find the following distribution 
function: 
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W( u. "· k ) . " . u. d" d" d~, d" = 21Apl2 (Eo-E,)Ik,-k,j'V"(Eo-Et)~-m2 {211-'12+11+12} 
v 1 "2• 1 n 2 s1n.,.1s1n "'2 "'1 "'2 •n ••2n ilk, 1 Eo (2n)' . 

sin i\1 sin i\2 . & . & d& d& dk dQ 
X (cos <lt + cos ll2)• Sln 1 Sln 2 1 2 1 21o 

(41) 
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A complete set of phenomenological equations is derived to describe the behavior of super­
fluid helium near the ~ point. The normal part of the liquid is described in the usual way, 
while the superfluid part is described by an "effective" wave function. 

IN the present work, equations obtained earlier 
by V. L. Ginzburg and the author to describe the 
behavior of helium II in the immediate vicinity of 
the ~ point1 are extended to include the nonstation­
ary case. In contrast with the ordinary hydrody­
namics of helium II, in the scheme considered here 
the density of the superfluid part Ps is not assumed 
a given function of p and T, but is determined 
from the equations; these equations characterize 
the approach of Ps to its equilibrium value. As 
in reference 1, the superfluid part of the liquid is 
described by a complex function 1/J ( x, y, z, t) = 
17ei<P which is so defined that 

1i 
vs=mVrp (1) 

( m is the mass of the helium atom). This func­
tion is introduced to take account of the quantum 
nature of the effect; its role in this scheme is the 

same as that of the expansion parameter in the 
usual theory of second-order phase changes.2 The 
helium state is characterized by the density of the 
liquid p, the velocity of the normal part Vn, and 
the entropy per unit volume S in addition to 1/J. 

1. BASIC EQUATIONS 

In reference 1 an equation was obtained to de­
termine the equilibrium values of 1/J for Vn = 0. 
Here, we first examine the equilibrium condition 
for the case Vn r=! 0. At low values of the veloci­
ties Vn and Vs, the energy per unit volume of 
the liquid can be written in the form 

v2 1;.2 
E = (p- m l ~ 12) ; +2m IV'~ 12 + s (p, S, I·~ J2). (1.1) 

This expression is the first term in the energy 
expansion in terms of the velocity vn and the 


