
SOVIET PHYSICS JETP VOLUME 35 (8), NUMBER 1 JANUARY, 1959 

A SUPERCONDUCTOR IN A HIGH FREQUENCY FIELD 

A. A. ABRIKOSOV, L. P. GOR' KOV, and I. M. KHALATNIKOV 

Institute for Physical Problems, Academy of Sciences, U.S.S.R. 

Submitted to JETP editor March 4, 1958 

J. Exptl. Theoret. Phys. (U.S.S.R.) 35, 265-275 (July, 1958) 

We derive an equation describing the behavior of superconductors in a high frequency field. 
With the aid of this equation the frequency and temperature dependence of the impedance of 
a bulk superconductor have been evaluated. 

As is. well known Bardeen, Cooper, and Schrieffer1 

have recently constructed a microscopic theory of 
superconductivity in which they succeeded in ex
plaining a whole number of properties of supercon
ductors. In particular, in that paper they consid
ered the behavior of superconductors in a constant 
weak field and obtained a new equation expressing 
the connection of the._current with the field, replac
ing the equation of the phenomenological theory of 
F. and H. London. This equation turned out to be 
non-local; with its help the problem of the pene
tration of a weak static field into a bulk supercon
ductor was solved in reference 1 and the depend
ence of the penetration depth on the temperature 
was found. 

In the present paper we consider the behavior 
of a superconductor in a high frequency field. The 
calculation given below shows that in an alternat
ing field the character of the connection between 
the current and the vector potential changes, and 
depends in an essential way on the frequency. For 
non-zero temperatures or a sufficiently high fre
quency this equation, written down for the Fourier 
components of the current, contains imaginary com
ponents, which are connected with the absorption 
of radiation in the superconductor. The impedance 
of the bulk superconductor is determined with the 
aid of the equation obtained. 

1. THE EQUATION FOR THE CURRENT IN THE 
SUPERCONDUCTOR 

In the non-stationary problem under considera
tion, it is most convenient to start directly from 
the expression for the current operator in second 
quantization: 
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The operators lf+ and 'if are here written down 
in the Heisenberg representation and depend on 
the field A. This dependence has the usual form 

~ (x) = s-1 (t)<fl (x) S (t), (2) 

where lj; ( x) is the second quantization operator 
in the absence of the field, and S ( t) the S -matrix 
satisfying the equation 

a , 1 (\ , \ , 
i ar s (t) = - -c· ~ j (x) A (x) d3x) s (t). (3) 

The field A(x) is, as usual, assumed to be adi
abatically switched on at t = -co. The value of 
the current in the superconductor at a given point 
and at a given instant can clearly be obtained by 
taking the average of the operator (1) over the 
Heisenberg state of the system coinciding with 
the state of the system in the absence of the field: 

In a weak field it is sufficient to perform the 
calculations up to terms linear in A. We can 
therefore in the second term at once put 'if= ¢; 
this is the usual "London" term 

- (eW I me) A (x). (4) 

In the first term it is necessary to expand the 
operators 'if and lf+ according to (2) and (3) up 
to terms of the first order in A: 

t 

~ (x) = tjl (x)- + ~ [~ (y), tjl (y)] A" (y) d4y (5) 

with a similar formula for 'if+. It is sufficient in 
turn to retain in formula ( 5) for j ( y ) only the 
first part of expression (1) 

j~ (x) = - 2ie (V' x- V x') ,J.+ (x') '\! {x) I . m T ~~x 
(6) 
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After substituting (5) into (6) we obtain the term in h (x) = <}1 (x) >which is linear in the field: 
t 
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i1 (x) = 4~:c (V x- V x') ~ (A (y) (V u- V u')) <{ tjl+ (y') q, (y) tjl+ (x') tjl (x)- tjl+ (x') q, (x) q,+ (y') q, (y)}; d4y. (7) 
-00 

Here and henceforth the primed coordinates differ only in the space variables, which must be put equal 
after performing the differentiation. 

The evaluation of the averages of the products of the four 1/J and 1/J+ operators in (7) can most con
veniently be performed by using the method developed by one of the authors in reference 2. These aver
ages are expressed in terms of pair averages: 

G'"~ (x- x') =- i <T ('i'" (x) q,t (x'))); Ft~ (x- x') = <T (l)ld (x) q,t (x'))); F '"~ (x- x') = <T ('\I'" (x) ~13 (x');. 

The dependence of these quantities on the spinor indices is as follows: 

Ft~ (x-x')=- F'"~ (x- x') = F (x-x') (_ ~ ~ )'"~ · 
Performing the averaging in (7) we get 

t 

h (x) = 2:.: (Px- Px') ~ (A (y}(py- Pu')) {[G (y- x') G (x- y') ~ F (x'- y') F (x- y)]- C. C.} d4y. (8) 
-<X> 

Going over to Fourier components we find: 
00 00 

2e2 \ d3p \' du;1 \' du;2 h (k, w) = m'c .) (27t)" .) ---z7t .) ---z,;- p (A (k, w) p) 
-oo -co 

x [o (p- +• w1) o(p + +• w2)-F(p- +, w1) F(p + +, w2)- c.c.J u;1 -u;2 =-u;-ill. 

The Fourier components of the functions G ( x - x') and F ( x - x') were found in reference 2. It is 
convenient to write them in the form 

(9) 

where 

u~ = 1/2(1 + ~p/ep); v~ = 1/2(1- ~p/ep); ~p = V(P-Po); Bp = v~;; + ~2 ; np = (e•p/T + 1t1. 

The quantity D.. depends on the temperature in the way found in the paper by Bardeen et al. 
Substituting equations (9) into the expression for the current and integrating we find for the Fourier 

components of the current: 

j (k, w) = (2 ~!2 
2 \' d3 pp(pA (k, w)) [Cv1u2 - u1v2) ( + 0~2 .ll + + u1v2 .ll) 

1t m C J &1 &2 U> + I &1 &2 - (ij - I 

(10) 

when the index 1 corresponds to the momentum p + !k, and the index 2 to the momentum p- !k. Sub
stituting into (7), assuming the vector A to lie in the surface plane of the specimen and performing the 
integration over cp we get 

1 ~. 

j (k, w) = 3e·~~~~· u;) \ d cos e sin2 6 \' d~ [(1 - ~1~2 + 112 ) 4aniL~ +tanh~) ( 1 + 1 ) J J £1E2 \ '2T 2T E1 + E2 + U> + ill E1 + E2- U>- ill 
-1 -~. 

(11) 
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In this expression we used the fact that terms con
taining one ~ give zero on integration. Indeed, we 
have 

~1.2 = ~ + 1/2 vk cos e, (12) 

and the integ:r:ations over cos () and ~ are per
formed over a symmetric domain. The quantity 
~ 0 determines the _upper limit of integration over 
~. 

2. PIPPARD' S LIMITING CASE 

Further evaluations are impossible to perform 
without more concrete assumptions about the mag
nitude of the parameters important for the prob
lem considered. Of the greatest importance for 
us is the fact that, apparently, the penetration 
depth of the field for the majority of supercon
ductors is much less than the quantity v/ !:1, i.e., 
vk » !:1 (See reference 1). * This inequality is 
violated only in the neighborhood of the transition 
point Tc, where the region with vk « !:1 occurs. 
As was shown in reference 1, the basic domain of 
electrodynamics is founded upon the equation pro
posed earlier by Pippard. 3 We shall call this re
gion the Pippard region. In the second region the 
applicability of the London electrodynamics4 is 
conserved (London region).t 

In the case of a variable field the London re-

gion gets narr:owed. This is clear, though, from 
the fact that a normal metal is a Pippard one, 
since !:1 = 0 for it, whence follows that the Lon
don region cannot continue up to the transition 
point itself. Leaving a detailed analysis of this 
problem until the next section, we shall consider 
here how Eq. (11) simplifies in the Pippard region. 
We shall at the same time also assume vk » w. 
As we shall see in the following, this is always 
correct in the range of frequencies of most inter
est. 

Equation (11) can be transformed in the follow
ing way. In view of the fact that w only enters 
into denominators such as E 1 + E2 + w + io, we 
ca11 subtract from the coefficient for A ( k, w) 
which we denote as - ( 3e2N!l/ 4mcvk) Q ( w) its 
value in the ·static case. The remainder will be 
the integral over ~ and cos () where the impor
tant region of integration is the region ~ « vk, 
cos () « 1. We introduce now as new variables 
~ 1 and ~2 • If we put vk » T (this will be shown 
below) we can assume that the integrations over 
~ 1 and ~ 2 proceed independently with limits from 
- oo to + oo. Terms with the product ~ 1 ~ 2 will 
thus drop out of the integral. Apart from that, the 
factor sin2 () can be replaced by unity. Finally 
we go over to the variables Ed !:1 and E2 I !:1 
(denoting them again by € 1 and € 2 ). As a result 
we get: 

(13) 

To fix ideas we shall now assume w > 0 and isolate the imaginary part from the integral (13). By 
means of slight transformations one can convince oneself that the real part of expression t13) is always 
of the same form as at T = 0, but with !:1 depending on the temperature. The final expression is of 
the form 

Col/il-l 
_!.':.e (~- 1 ) (' de [e(w I~ -e)-1] [tanh(w/2T-e~/2T) + tanh(e~ /2T)] 

2 2~ .) Ve•-1 V{w;~-e)2 -1 
1 

00 

-i1t\ ds [e(w/11+e)+1][tanh(w/2T+e~/2T)-tanh(e~/2T) 
.) Ve2-1V{e+w/~)2 -1 
1 

(14) 

where e (x) = { 1 x> 0 
0 x<O. 

*Strictly speaking, the strong inequality vk » tl. is not valid. But the applicability of the fonnulae obtained in this limiting 
case is provided by the insertion of significant numerical factors. 

tSuch a family of superconductors we shall call Pippard superconductors. The opposite case (which can be called the Lon
don case) when the superconductor for w = 0, is described by the equations ofF and H. London in the whole temperature range 
is, apparently, less common, and we shall not consider it. 
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One integration in the real part of Q ( w ) can be performed. After this there remains 

Re [Q (c.u)- Q (0)] = J (c.ul Ll) + J (-c.ul Ll)- 2g (0), (15) 

CX> where 
g(~-) = \ dt [t (t + w 1 ~) + 1) cosh-1(8 + ~). 

~ .\ Y t 2 - 1 Y (t + w I ~)2 -1 2'. 
1 

(16) 

Although each of the integrals in (15) diverges, together they give a finite expression. 
g (- w/ t..) in the region where 1 > € - w/ t.. > 0, we must replace 

In the integral 

and in the region where € - w/ t.. . is negative we 
must take -arc cos ( w/ t.. - €) or, respectively, 
!1r + sin-1 ( w/ t.. - € ). The limiting value of this 
expression in the region of small frequencies is 
of the form 

Re [Q (c.u)- Q (O)J = (57t2 I 12) (c.u I Ll) 2 • 

In the region w/ t.. » 1 we get 

Re[Q(c.u)-Q(O)] = 21n(2c.ulll)-7t•. 

(17) 

(18) 

An expression for Q ( 0 ) was found in Bardeen, 
Cooper, and Schrieffer' s paper .1 It is of the form 

Q (0) = 7t2 tanh(Ll I 2T). (19) 

The integration (16) can be carried out in the 
case w = 2.6.. In view of the fact that according 
to (14) the imaginary part of Q ( w ) is equal to 
zero for w < 2.6., we get 

- 2 In 2- 1t2 = 2.5. 

Hence it is clear that for T = 0 the magnitude 
of the current, and consequently the penetration 
depth :which is proportional to Q ( w )1f3 (see Sec. 4), 
changes little when the frequency is changed from 
0 to 2.6.: 

o (2Ll) 1 o (0) lr-o = 0.93. 

The imaginary part of formula (13) depends in 
an essential way on the relations between t.., w, 
and T. We consider first of all the case T = 0. 
Then there remains only the first term of the 
imaginary part in equation (14) (we shall call it 
the "pair" term) which is different from zero 
only for w > 2.6.. Physically this is completely 
clear. As is well known, the imaginary part of 
the current determines the absorption and in the 
absence of an excitation such an absorption can 
only take place thanks to the destruction of a pair. 
The quantity 2.6. determines the energy necessary 
for this, when the statistics are taken into account. 

Performing some simple transformations of 
the integral·we find 

Im Q (c.u) = - 27t6 (2~ - I) 
(20) 

X 

This integral can be reduced to an elliptical one. 
Near the threshold, i.e., for w/2.6. - 1 « 1 it has 
the form 

ImQ(c.u) = -7t2 (c.ui2Ll--l). (21) 

In the limiting case of large frequencies w » t.. 
it becomes equal to 

Im Q (c.u) = - 1tc.u ILl. (22) 

In the case of temperatures different from zero, 
of most interest are some limiting cases, as we 
shall see in the next section. 

(a) The case T ,.., w « t... Here, of course, only 
the second term of the imaginary part of Eq. (14) 
(which we shall call the "electron" term ) will 
take part. Transforming it, we find 

Im Q (c.u) = - 47t sinh~- K ( ..!"._) e-il/T (23) 
2T 0 ,2T ' 

where Ko (x) is a Hankel function of aa imaginary 
argument. In particular, we have for T « w « t.. 

Im Q (c.u) =- 27tV 1tT jc.ue-il1r, (24) 

and for w « T « t.. 

il 
ro 4T -y 

ImQ(c.u)=-27t-T ln-e ; yro 
(y = eC = L78). 

(25) 

(b) The case w « T ,.., t... Again only the elec
tron term takes part. By means of a series of 
transformations we find 

[ 6) -· ~ I v2~ ImQ(c.u)=-7t ycosh :27' n2 6l 

+ ~ ( 1- tanh :r)- 2 ; p (: )] ' 
(26) 

where the function P ( x) is the integral 

p (X) _ r~ COSh xE- COSh X ( 27 ) 
- .l e• -1 (cosh xE +1) (cosh x + 1) 

1 
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The limiting values of this function are as follows: 

x :';;:> 1 P (x) =e-x In 2yx, 

x <Z;_ 1 P (x) = 4xrr.-2 C (3) = 0.485x. 
(28) 

From expression (26) we find that for w « T « .6. 
the result coincides with (25) while for w « .6. « T 

Im Q (w) =- rr.w f !1. (29) 

(c) The case w ,..., .6. « T. Although the pair 
term in princ!ple takes part in Im Q, its contri
bution turns out to be small. As to the electron 
term, we get from it again equation (29). 

(d) The case T « w ,..., .6.. Here there are two 
possibilities. If w < 2.6., only the electron term 
will take part which gives 

A 
./ T T --

Im Q (w) =- 2rr.Y~ Jl 2~ + -z;-e r. (30) 

In particular, Eq. (24) is obtained for T « w « .6.. 
If w > 2.6., expression (30) is exponentially small 
compared to the contribution from the pair term 
( of course slightly away from the threshold ) . In 
view of the smallness of the temperature we can 
then use Eqs. (20) to (21). 

(e) The case .6. « T,..., w. Here both the pair 
term and the electron term take part to an equal 
degree. The calculation leads to the result 

ImQ(w)= -rr.(: -2tanh ;r)· (31) 

Although in this formula the second term is much 
smaller than the first one, we have retained it for 
a reason which will be given below. 

(f) The case T ,..., .6. « w. Here the most im
portant contribution is given by the pair term, and 
it is sufficient to consider only the main expression 
which is the same as Eq. (29). 

At the end of this section we must note that in 
all cases when w » .6. the real part of Q ( w) is 
small compared to the imaginary part which is, 
independently of the temperature, equal to - 1rw/ .6.. 
In this way the relation between the current and 
the vector potential is in the case w » .6. of the 
form 

j (k, w) = i (3rr.e2Nwf 4mcvk) A (k, w). (32) 

This relation does not contain .6. and is exactly 
the same as the one obtained from the theory of 
the anomalous skin effect in a normal metal. This 
result is natural. 

However, in the cases w » .6. we can not re
strict ourselves only to the main term. In order 
that the difference between the superconducting 
state and the normal state can be revealed, it is 

necessary to take into account also terms of the 
next order. In the case .6. « T ,..., w these terms 
come both from the real and from the imaginary 
part of Q ( w ) . Just for that reason was the main 
expression in Eq. (31) supp,emented by a small 
term. In the last case T ,..., . .6. « w the main cor
rection gives only the real part of Q ( w). 

3. THE LONDON REGION 

We shall now elucidate un,der what conditions 
the London region vk « .6. occurs. We shall not 
consider, as already stated, the possible, but ap
parently very uncommon, case when under static 
conditions the superconductor is a London one for 
the whole temperature range. 

As was already noted in the preceding section 
the London region can appear only near T c. On 
the other hand near T c the gap width .6. becomes 
very small and since for w » .6. the metal differs 
little from a normal conductor, the London region 
cannot extend to the critical temperature itself 
and in an,y case has an upper limit through the 
condition w « .6.. 

To find the more exact location of the London 
region we find first of all the connection between 
the current and the vector potential in the case 
.6. » vk. To do this we take into account the ear
lier noted fact that for the whole range of frequen
cies of interest we can assume w « vk and also 
that the London region occurs only in the immedi
ate neighborhood of Tc, i.e., that we. can assume 
that .6. « T. The necessary equation is obtained 
from Eq. (14). Only the integral with the differ
ence of the tan,gents is then essential and the 
last term in that equation. 

We find in that way 

· (k ) e2NA (k, w) {a. ~ _ 3i7tw}. 
J ' w = - · me T2 4vk ' 

' c 
(33) 

where 

IX = _ _!_} ~ xdx = _2_ C(3) = 0.21. 
4 .l x cosh3 x 47t2 

0 

If we restrict ourselves to the real part of this 
relation, we obtain the equation of the Londons, 
where the expression within the braces plays the 
role of the ratio of the number of superconducting 
electrons N8 to the total number of electrons. 
The imaginary part corresponds to absorption. 
We note that this expression is obtained under the 
assumption w « .6. « T and w « vk but the re
lation between vk and .6. and between vk and 
T can be arbitrary. This explains indeed also 
the fact that this expression coincides within a 
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small correction term with the corresponding 
equation for the Pippard case. 

As a criterion for the transition from the Pip
pard region to the London region one can take the 
equality of the coefficients of A in the expression 
for the current. For the Pippard case, assuming 
w « ~ « T, we find from (17), (19), and (29) 

• e2N {3'"2 A2 • 3 "' } J (k, w) = -mcA(k, w) 8 ukTc -t T'" Vii . (34) 

We shall compare this formula with Eq. (33). We 
assume that the imaginary parts in both equations 
are small compared to the real parts. In that case 
the criterion coincides with the criterion for the 
static case. The London region occurs for 

vk 4;. vk1 = 37t2Tc / 8ot = 17. 7Tc. (35) 

Assuming k "" 11 o where o is the penetration 
depth, one can show, using the well-known London 
equation for the penetration depth o L = 
(mc2147l'Nse2 )1f2 and Eq. (33), that this corre
sponds to the condition 

_ 3 ( 1t )'''( mc2 )''' 2 1:1«:; I6 7 Ne2u2 Tc. (36) 

From this inequality it follows that for instance 
for aluminium the London region occurs for 
(T0 -T)ITc"'4X10-4 , fortinfor (T0 -T)ITc 
"'3 X 10-2.* 

When the temperature is increased the real 
part in Eq. (33) becomes small compared to the 
imaginary part. But since in the latter case the 
superconductor differs little from a normal metal, 
we obtain necessarily the Pippard case (we re
member that the imaginary part in (33) refers to 
that case). In that way we can assume that the 
London region is bounded by the condition 

(37) 

or, after substituting for the London penetration 
depth, 

(38) 

Comparing Eqs. (34) and (35) we get the condi
tion for the occurrence of the London region 

(39) 

*Tin is in fact not a genuine Pippard metal and is on the 
boundary between the London and the Pippard situations, since 
for tin vk "' vk, already at T = 0. But since far from T c the 
temperature dependence and the penetration depth are very weak, 
essential departures from the Pippard equations occur only in 
the neighborhood of T c• 

Such a limitation can mean completely differ
ent frequencies for different substances. For al
uminium, for instance, this frequency corresponds 
to 2 x 10-2 Tc or ,..., 3 x 109 sec-1• For tin it is 
equal to 0.5 Tc ~ 2 x 1011 sec-1• 

In view of the fact that of the greatest interest 
is the range of frequencies not too far from ~ ( 0 ) 
which for a Pippard metal is practically always 
beyond the limits of the region bounded by the in
equality (39) we shall in general not consider the 
London region. 

It is appropriate to note here also that apart 
from a limitation as to frequencies, the applicabil
ity of F. and H. London's equations in the form 
(33) is also limited from the high temperature 
side by the condition that the dimensions of pairs, 
which is of the order of vi~. must be small com
pared to the mean free path. In the opposite case 
the constant coefficient occurring in F. and H. 
London's equation can no longer be described by 
the first term within the brackets of Eq. (33). 
Since the mean free path can on the average be 
assumed to be of the order of 10-3 em, and 
vI~ ( 0) "' 10-4 em, the region of applicability 
of Eq. (33) is generally speaking small. As to 
the case vI~ » l, the electrodynamics for it 
has not been formulated and we shall not dis-
cuss it. 

To conclude this section, we note that, as can 
be easily seen, for frequencies larger than w0 

a direct estimate gives vk » T c for the whole 
range of temperatures, including the neighborhood 
of T c where the penetration depth is maximum. 
Such a relation between vk and T was essential 
for the conclusion reached in Sec. 2. 

4. THE IMPEDANCE 

The relation between j and A can be substi
tuted into the Maxwell equations and one can obtain 
an expression for the dependence of the vector 
potential on the coordinates. 

In the Pippard case considered by us the corre
sponding calculations are not different from the 
static case 1. Assuming the reflection of the elec
trons from the surface to be diffuse, we get for 
the penetration depth: 

00 

" 1 (' ReA (0) 
o = H (O) Re ~ H dz = H (O) 

0 ~~ 

¥3 ( c2mu )''• -'/, = 21t 37te2NA Re [Q (w)] · 

The impedance is determined as follows: 
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Z = R + iX = E (0) I f j dz = - -4rr E (O) 
~ c H (0) 

(41) 
_ 4rric.> A (0) _ 2 V3rric.> ( mc2v )'/, 
-- 7 H (0) - - -c-2 - -3rre2N t.Q (c.>) 

For complex Q ( w) the value of the root is deter
mined as the analytical continuation of the real 
root for real Q ( w ) ~ 

It is convenient to relate the magnitude of the 
impedance to the value of the active resistivity in 
the normal state which is equal to 

Rn = V3 (mvc•r: I 3N e2 )'1' w'1• / c2• (42) 

Such an expression is obtained by substituting 
Q ( w) = - i7rw/ ~ into (41) (see also reference 5). 
The ratio Z/Rn is determined by the equation 

Z (w) j Rn = - 2i (r:w 1 I:!.Q (w))'l•. (43) 

For the case T = 0 the frequency dependence 
of the impedance is obtained from Eqs. (43), (15), 
(19), and (20). 

In the case of non-zero temperatures we carry 
out an analysis of the temperature dependence of 
the impedance for different frequencies. 

(A) The case w « ~ ( 0) 

(1) For the lowest temperatures there occurs 
the region T « w « ~. Then T becomes of the 
order of w and finally we go over to the region 
w « T « ~. A description of that transition is 
given by Eqs. (19), (23). Substituting into (43) and 
taking into account that Re Q ( w ) » Im Q ( w ) we 
get 

(2) When the temperature is raised further, we 
get into the range w « ~ "' T which then goes over 
into the range w « ~ « T. This transition is de
scribed by Eqs. (19) and (26). As long as 
~IT » w/ ~. the imaginary part of Q ( w) will be 
small compared to the real part, as before, and 
we get in that way 

z~:) = 2 [rrt. tanh7t.;2T)t [3!;- sinh(; IT) In 2 v~ 
+ 3~ ~ ( coth :r - 1)--3: P ( ~) coth 2~ - i J. 

(45) 

where P ( ~/T) is given by expression (27). 
(3) For still higher temperatures, ~ decreases 

so much that it becomes comparable with and then 
less than w. This region is described by Eqs. (19), 
(15), and (29); for w "' ~ the real and imaginary 

parts of Q ( w) are of the same order of magni
tude, and fo:r; w » ~ the real part of Q ( w) turns 
out to be small compared to the imaginary part. In 
that limiting case the equation for the impedance 
is of the form 

z (c.>) 1 t. ( 2c.> ) 
7f;=1+V3rr·-z; 2In--:s-+r:2 

(46) 

-i V3[I- ~-~(21n 2c.> + rr2)J 
3V3rrc.> !::>. • 

(B) The case w ,.... ~ ( 0) 

(1) At low temperatures we have T « w "'~. 
In this region one applies Eqs. (15), (19), and (30) 
in the case when w < 2~ ( 0), or Eq. (20) if w > 
2~ ( 0 ) . In the first case the imaginary part of 
Q ( w) will be small compared to the real part, 
and the expression for the impedance will be of 
the form 

Z(c.>) _ 2,/ c.>rr 
Rn-- V !::>.ReQ (c.>) 

X [ 2rr vr. I I _I__ I _I_ e- t.JT- i] 
3ReQ (c.>) V 2!1 T c.> ' 

(47) 

where Re Q ( w) is given by Eq. (15) with an addi
tional 7T 2• In the case w > 2~ ( 0 ) the equations 
for the case T = 0 can be used. 

(2) When the temperature is raised we go over 
to the range w "' ~ "' T and finally we get into the 
range ~ « T "' w. Here we can use equations (18) 
and (31). Inasfar as the real part of Q ( w) is less 
than the imaginary part we can again use an expan
sion. As a result we find: 

Z (c.>) = 1 +~~(21n~ +rr2 + 2"__ tanh~) 
Rn V3 rr c.> !::>. V3 2T 

- i V3 [1- ,;- ~ (21n~ + r:2 -2rrV3 tanh~)]. 
3r3rrc.> !::>. 2T 

(48) 

It is interesting to note that when the temperature 
is lowered starting from Tc, the real part of the 
impedance initially does not decrease, but slightly 
increases. 

(C) The case w » ~ ( 0) 

In this case only the relation between T and 
~ changes, but w is all the time large compared 
with them. Here we apply Eqs. (18), (19), and (29). 
Taking into account again that the real part is 
small, we find: 

Z(c.>) = 1 +~~(21n~+r:2 (1-tanh~-)) 
Rn V3rr c.> !::>. 2T (49) 

. v- 1 1 t:.. ( 2cu t. )] - t 3 l I - --v=-- 2 In - + :-r2 (I -tanh -) . 
3 r 3 rr "' !::>. 2T 
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In view of the fact that a detailed comparison of 
the theory with experimental data requires large 
numerical calculations (first of all a tabulation of 
the functions (15) and (20), which at this moment 
has not yet been concluded) such a comparison 
will be given in a later paper. 

In conclusion the authors express their~eep 
gratitude to academician L. D. Landau for his in
terest in this paper. 
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