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The influence of elastic strains on the properties of the electron gas in a metal is considered. 
It is shown that if the metal contains electron groups with significantly different numbers of 
electrons, the de Haas -van Alphen effect is very sensitive to deformations of the metal. An 
explanation is offered for the oscillations of the thermodynamic quantities, which can be pro­
duced, by changing the external pressure, in a metal placed in a constant magnetic field. 

MANY recent articles deal with experimental in­
vestigations of the influence of elastic deformations 
(particularly uniform compression) in metals on 
the physical phenomena that are due to the charac­
ter of the energy spectrum of the conduction elec­
trons.1-4 In the present work we shall study cer­
tain effects in deformed metals, starting with a 
semi -phenomenological account of the influence 
of elastic deformations on the electron spectrum. 

1. Following Akhiezer et al. 5 we shall assume 
that the influence of elastic deformation on the law 
of electron dispersion can be taken into account 
in the form of a small addition to the electron en-
ergy in the undeformed metal:* 

s"' (p) =so (p) + gik (p) Un" (1) 

where e:a ( p) and e:? ( p) are the energies of the 
electrons of group a in the deformed and unde­
formed metal respectively, t Uik is the deforma­
tion tensor, and gfk ( p) is a tensor function of 
the quasi-momentum p, characteristic for the 
given group. In writing (1) it is assumed that the 
inhomogeneity in the deformation field is small, 

*Since the electron energy s(p) in the metal is a periodic 
function of p with the period of the reciprocal lattice, the de­
formation of a metal changes not only the form of the function 
s (p) itself, but also its period. In the case of electron trajec­
tories in quasi-momentum space, located in one or several 
neighboring elementary cells of the reciprocal lattice, both 
these changes in s (p) can be described, in the case of small 
deformations, by formula (1). If, however, the electron trajectory 
covers a very large number of reciprocal-lattice cells, then a 
small change in the period of the deformation cannot be taken 
into account in the form of a small addition to the function s (p); 
however, we shall not be interested henceforth in such trajec­
tories. 

tHereinafter, zero in the subscript will denote the corre­
sponding quality in the undeformed metal. 
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i.e., that uik changes substantially over distances 
that exceed considerably the average de-Broglie 
w'avelength for the electron. Note that if Uik in 
(1) is taken to be the field of the sound wave, then 
the second term in (1) becomes the classical ana­
logue of the electron-phonon interaction Hamilto­
nian. Therefore the gik ( p) are connected with 
the effective cross sections for the absorption 
and emission of a phonon by an electron. 

Starting with (1), it is easy to calculate the 
spectral characteristics of the electron gas in 
a homogeneously-deformed metal: the number 
of states of an electron of group a with ener­
gies less than e: is na ( e:) and the total number 

of states is n ( e:) = :0 na ( e:). It turns out that 
a 

in an approximation linear in uik we have 

n"' (s) =no (s)- Uikg~kPO (s), Po (s) = dn~ (s) Ids, 

where g;a is the average value of ga ( p) over 
the equal-energy surface €? (p) = e:: 

(integration over the surface e:r ( p) = e:), and 
also 

where 

.. .. 

(2) 

Let us consider an electron gas in a homoge­
neously-deformed metal of volume V at low tem­
peratures ( kT « t, where t is the chemical 
potential of the electron gas at T = ooK), when 
the number of electrons per unit volume can be 
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considered equal to n ( t). From (2), and from 
the condition that the number of electrons is con­
stant, 

V n (q = V0n0 (~0) = const 

we can then determine the change in the chemical 
potential {j t, due to the deformation of the metal 

(3) 

where o·k is the Kronecker symbol. 
Natur~lly, the coefficients aik are determined 

in terms of the functions gik for all electron 
groups. If the metal contains electron groups with 
substantially differing numbers of electrons then, 
generally speaking, aik is determined essentially 
by the groups with large numbers of electrons i.e., 
aik "' ~;gr, where ~;gr is the chemical potential 
reckoned from the "bottom" of the energy band of 
the fundamental group of electrons. Assuming the 
usual value of ~;gr for metals, the order of mag­
nitude of aik can be estimated to be 1 ev. 

Since aik is a symmetrical tensor of second 
rank, the number of its independent components, 
meaning also the number of independent experi­
mental measurements of o!; from which aik can 
be established, is determined by the symmetry of 
the crystal. For example, for cubic metals aik 
has one. independent component ( aik = aoik), and 
for uniaxial metals it has two independent compo­
nents. 

In case of uniform hydrostatic compression at 
a pressure p, Eq. (3) becomes 

(4a) 

where s 'kl is the tensor of the coefficients of 1 m 
elasticity of the metal (repeated indices are 
summed). 

The value of the scalar coefficient a in (4) 
can be readily estimated from the following con­
siderations. Were the examined "electron gas in 
the metal" a free gas, then at constant tempera­
ture it would obey the relation o!; = voop, where 
v0 is the volume per· gas particle. For an electron 
gas in metal, this relation can be satisfied only in 
order of magnitude, i.e., a"' v0• Considering that 
in a metal there is approximately one electron for 
each atom, we obtain, in order of magnitude, a"' 
10-23 cm3. This estimate, as expected, corre­
sponds to the values of the coefficients aik esti­
mated above. 

In the case of uniaxial compression of a metal 
at a pressure p (for example, along the x3 axis), 
formula (3) becomes even simpler: 

(4b) 

Finally, we note that the change in the electron 
work function of the deformed metal follows from 
(3) and (4). As a result, a contact potential differ­
ence arises between two specimens of the same 
metal, if one specimen is elastically deformed. 

2. Consider a metal having one or several 
groups with an anomalously small number of elec­
trons. For such a group, tf3 « tgr ( tf3 is the 
chemical potential, reckoned from the bottom of 
the {3 energy band). As is known, the presence 
of such a group of electrons leads to a very strong 
de Haas -van Alphen effect. Here the period of 
the corresponding oscillations due to a change in 
magnetic field H is determined by the extremal 
area ~ ( !;{3) of the intersection between the 
Fermi surface for the anomalously small group 
and the plane perpendicular to H.6 In the de­
formed metal, the area cut from the Fermi sur­
face varies both because of change in the form 
of the equal-energy surfaces and because of the 
change in t. Taking account of both factors that 
influence the variation of Sm. we readily obtain 
from (1) the area of the central section of the 
Fermi surface after deformation. 

s~ (~~) = s<::; (~~ + aq { 1 +~~hun.); (5) 

Here f3ik is a coefficient that takes into account 
the change in the form of the {3 -equal-energy sur­
face. This coefficient depends on the orientation 
of the plane of intersection. If the intersection 
considered is fully contained in one cell or covers 
only several cells of the reciprocal lattice, then 

o-·~ 0 ~ 2 ° dS0~ I d" ~ik = - 27tm~gik ISm, o.m~ = m '-~• 

where g*f3 is the average value of gf3 ( p) along 
the trajectory which encloses the area S~ ( !;~) 
in the quasi-momentum space. Generally speak­
ing, f3ik "' 1. 

Since, in order of magnitude, o!;"' Uik~;gr, we 
can use in (5) 

ac1cg ~ u,h ((g• ;,g). 
For anomalously small electron groups we 

usually have !;gr /to "' 102 to 103, and therefore 
for deformations uik "' 10-2 to 10-3 it turns out 
that o!;"' t~. i.e., the change in the cbemical 
potential is commensurate with !;~. In this case 
it follows from Eq. (5) that 

(a) with varying H, the oscillation period 
changes, because of {j t, by an amount comparable 
with the period itself, in spite of the fact that the 
deformation, and hence the relative changes of 
the crystal-lattice constants, is small; 

(b) anisotropic changes in the period of the 
oscillation determined by the second term in the 



IN F L U E N C E 0 F DE F 0 R M A T I 0 N S 0 N 0 S C ILL AT I 0 N E F F E C T S IN ME TAL S 173 

curly brackets of (5) give a relatively small con­
tribution to the total change in the period. 

This means that of the two indicated factors 
that influence the oscillations in a deformed metal, 
the change in the chemical potential of the elec­
tron gas is the more significant. The change in 
the form of the {3 Fermi surface affects very 
little the oscillations due to the {3 group of elec­
trons. 

If the electron dispersion in the undeformed 
metal is not quadratic, then the effective mass 
m~ of the electron depends in general on the 
energy, and should therefore be considerably 
changed by the above deformations. This leads, 
in particular, to a considerable change in the 
temperature dependence of the amplitude of the 
oscillation that is determined by the quantity m~. 

A similar type of period variation and a sim­
ilar temperature dependence of the deformation 
were observed for single crystals of zinc by 
Dmitrenko, Verkin, and Lazarev,2•3 

Let us note that simultaneous measurements 
of the changes in the oscillation periods, i.e., 
oSm, and of the effective mass of the electron 
m 0 in one form of deformation makes it possible 
to determine ot, and consequently the coefficients 
a or b in (4). With several loads it is possible 
to determine the coefficient Cl!ik in (3). In fact, 
we have 

oS~ = 27t'm~a: = 27t' [m~ (~0) +om~] oC, (6) 

where omf3 is the average change in the electron 
mass due to the deformation. Relation (6), to­
gether with (3) and (4), solves the above problem. 

If the coefficient a (or b) is known, it is 
possible to establish the energy dependence of ~. 
over a considerable range of energies, from the 
dependence of the period on p. This energy de­
pendence makes it possible to establish the law 
of electron dispersion in the anomalously small 
group for a sufficiently large region of the Fermi 
boundary energy. 

Finally, since ~ ( E) is a monotonic function 
of energy for closed equal-energy surfaces, then 
the following is true: 

(a) In the presence of anomalously small groups 
of carriers of opposite polarity, the corresponding 
periods will change upon deformation in different 
directions (increase for particles of one sign and 
diminish for those of the opposite sign). 

(b) Changing the sign of the pressure in uniaxial 
loading, as can be seen from (4b), leads to a change 
in the sign of oS~ for anomalously small groups 
(in the case of a quadratic dispersion law, the ef­
fect should be symmetrical, accurate to terms 
!3ikuik ). 

A change in the sign of o~ was observed by 
Verkin and Dmitrenko upon reversal of the uni­
axial loading of single crystals of zinc. 7 

3. Equation (5) leads also to an explanation of 
another possible oscillation effect, namely oscilla­
tions of thermodynamic quantities in a constant 
magnetic field due to changes in the external load 
applied to the metal.* Actually, at low tempera­
tures, oscillations produced in any thermodynamic 
quantity by the {3 group of electrons are deter­
mined by a factor of the form 6 

sin (cS~ (C~) 1 etlH + rp ), (7) 

where q; is a certain practically-constant phase. 
A change of 27T in the argument of (7) corre­

sponds to one period of oscillation. As can be seen 
from (5) and (7), this change can result, at constant 
H, from a change in t due to the deformation of 
the metal. In the presence of an anomalously small 
group of electrons, it is easy to determine from 
(5) and (7) what change in chemical potential cor­
responds to one period of oscillations: 

M = 27t'etlH I c (dS~jd:) = et.Hjm~c = (L~H. (8) 

Naturally, (8) coincides with the distance between 
the electron energy levels in the magnetic field. 
Formula (8) becomes quite obvious in the case of 
a quadratic dispersion law, when the argument of 
(7) contains 21Tt{31JJ.{3H. 

In the case of uniform hydrostatic compression, 
the change in pressure p, corresponding to the 
oscillation period, is 

b.p =b.~/ a= (L~H ja. (9a) 

In uniaxial compression along the x3 axis, the 
period of the pressure oscillations is determined 
by the formula 

(9b) 

Formulas (8) and (9) show (a) that the period of 
oscillations due to changes in applied pressure p 
is proportional to the magnetic field H, and 
(b) that the anistropy of the period and its depend­
ence on p are determined by the anistropy and 
pressure dependence of the effective mass m av­
eraged over the perioo. 

Measurement of the oscillation periods due to a 
change in pressure in weak magnetic fields, when 
the energy period of At= Jl.f3H is small, makes it 
possible to determine directly the effective mass 
of the electrons of anomalously small groups and 
its dependence on p (meaning also on the energy). 

The possibility of experimental observation of 

*That such oscillations can be observed is suggested also 
by Alekseyevskiy, Brandt, and Kostin a. 4 
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the above oscillations is confirmed by the fact in 
references 2 and 3, at p = 1500 atmos, the change 
ot; is comparable with t{3 for an anomalous group 
of electrons in zinc, while in weak fields usually 

J.l.{3H « t;/3. * 
In conclusion, I use this opportunity to thank 

I. M. Lifshitz for counsel and discussions, and 
also B. I. Verkin and I. M. Dmitrenko for discus­
sing the results of the work. 
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Processes that can compete with electromagnetic processes at high energies are considered. 
It is shown that these can be processes associated with four-fermion interactions. 

1. INTRODUCTION 

IT has been shown in reference 1 that the appli­
cation of the present method of renormalization 
in quantum electrodynamics leads to a difficulty 
in principle - to the vanishing of the renormalized 
charge. Although objections have been rais.ed2 

against the unconditional cogency of the proof, 
nevertheless it seems to be quite convincingly 
demonstrated that there are difficulties in prin-

ciple in the range of energies E defined by the 
condition a ln ( E/mc2 ) "" 1 (a = e2 /tic). The 
typical length corresponding to this energy, 
l"" ( ti/mc) e-37r/ a, lies far beyond the limit of 
the gravitational radius of the electron, as was 
first shown in reference 3. The limiting energy 
itself is enormously large ( E0 "" mc2e37r/a). 

It can therefore be expected that in actual fact 
the limits of the applicability of the present elec­
trodynamics will show up considerably earlier, 


