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The formula proposed by Inglis for the nuclear moment of inertia is calculated by perturbation 
theory in an approximation that is quadratic in the deformation parameter. An infinite rectangle 
well is assumed. The obtained moment of inertia of closed shells is several times larger than 
the hydrodynamic moment of inertia. 

l. Assume a nonspherical potential well, rigidly 
coupled to a massive rotator. If we fill the lower 
levels of the well with non-interacting nucleons, 
we obtain a certain system (called the Inglis 
model1 ), the rotary properties of which are of 
procedural interest in the study of the rotation of 
real nuclei. The moment of inertia of the system 
comprises the moment of inertia of the rotator 
and the moment of the inertia of the nucleons en­
trained by the rotator. The latter moment is given 
by formula (4), previously investigated by Inglis1•2 

and by Bohr and Mottelson. 3 These authors used 
the potential of the anisotropic harmonic oscillator, 
and were thus able to calculate (4) in closed form .. 
In the case of closed shells, the result obtained 
does not differ substantially from the hydrodynamic 
result. 

The present paper concerns results obtained 
for an infinite rectangular potential well. Because 
of the great mathematical difficulties, we restrict 
ourselves to closed shells. The wave functions 
were calculated by perturbation of the boundary 
conditions, up to and including the fourth approxi­
mation. The perturbation due to the rotation was 
considered [see Eq. (4)] in the first order of per­
turbation theory. All together the moment of inertia 
of the closed shells was determined up to terms 
quadratic in the deformation parameter. 

2. In a coordinate system that rotates, together 
with the nucleus, around the x axis with angular 
velocity n, the boundary S of the potential well 
is given by 

r = Ro (I + oc), where oc = ~ oc1P~. (cos 6). (1) 
1.~0 

Here aA. are coefficients which will be considered 
in the following small compared to unity, (J is the 
polar angle, and PA. (cos (J) are Legendre poly­
nomials with the usual normalization PA. ( 1 ) = 1. 
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The wave function "Ill obeys inside S the time­
independent Schrodinger equation of a free particle, 
augmented by a term describing the Coriolis force 

(2) 

with the boundary condition 

'Y is= 0. (3) 

Here k is the wave number, M the nucleon 
mass, and Lx the projection of the angular mo­
mentum on the x axis. 

The contribution to the moment of inertia from 
the given nucleon equals 

(4) 

Here 

(5) 
N = (lji,lji). 

The functions 1/J and cp obey the following equa­
tions and boundary conditions 

lJi is = 0; ? s = 0. (7) 

In an unperturbed spherically-symmetrical square 
well the functions 1/J have the form 

(8) 

Here Y lm are spherical harmonics, j z ( x) the 
spherical Bessel functions, and k0 the eigenvalue 
determined by the condition j z ( koRo) = 0. In the 
following we shall denote k0R0 =X. We shall char­
acterize the excited states by the same numbers, 
l and X. We shall speak about closed l-shells in 
the nonspherical well in the sense that the partici­
pating states form closed l-shells for vanishing 
deformation. 
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In general 1/J and cp are given by 

~ = ~ al'h (x) Yl'm, az = I; (9) 
l' 

1 
([> = 2 (cp<+> + cp<->), 

(10) 

Here 

cp<+> = ~ [az•fz· (x) + bz·h· (x)] Bz.Yu, m+I• 
l' 

cp<-> = ~ [aufz· (x)+bdz• (x)]Cz·Yz·. m-1· 
!' 

Bz = (L+)m+1,m = lf (l + m + 1) (l- m); 

Cz = (L-)m-1, m = lf(l + m) (l-m + 1 ); 

L± = Lx+iLy; X= kr; 

(11) 

the numbers k, az', bz', and c1 obviously depend 
on l, m, and X. 

It is easy to see that the terms which contain 

the functions fz,( X) =: X ! j z,( X) are particular 

solutions of the inhomogeneous equation for cp, 
while the terms containing j Z' ( x) are solutions 
of the corresponding homogeneous equation. The 
coefficients bl' are determined by the boundary 
condition cp(+) Is = 0 and the coefficients cz' 
are obtained from the bz' by changing m to -m. 

The moment of inertia is now given by 

_ 1 . _ M (<jJ, L<p<+>) 
1-2 (!+ + /_), /+ --k2 (<jJ<jJ) (12) 

(~ariu (x) Y l'm, 2; [arfz• (x) + bz,jz. (x)] B7.Y l'm) 

M z• l' 
--k-.-

( ~ az,fr (x) Y l'm, ~ az,i l' (x) Y l'm) 

l' l' 

The moment L follows from 4 by the substi­
tution of m by - m. We therefore do not have to 
investigate L separately, and correspondingly do 
not need the function cp (-). 

We now expand all quantities in power series 
of aA.: 

au= aW + a\7> +a\~> for l' =f=-l; az =I; (13) 

We have here written the terms needed to calculate 
the moment of inertia in the quadratic approxima­
tion. All these terms are successively determined 
by the boundary conditions (7). 

The moment 4 can be writt.en as the series 

/+ = /l_t1) + J~> + /~) + J~>. (14) 

In summing over m, the terms IS:-1), I~) and 
I~) vanish. Thus, as could be expected, the ex-

pansion of the moment of inertia for closed shells 
begins with the quadratic term: 

/ (2)- ~/(2) 
z.x- LJ +· 

m 

After extensive calculations we obtain 

(15) 

I i~k = L; -; {b [(2l -- I) (2l + 5) + 2X2 ] B1 (p 11 - qu)2 

m o 

+ ~'[ f (B~ + B~·) (p7z• + q7l')- BzBz•Pzz•qu·] (16) 
l' 

Here 

cpz• =I + fz• (X) I iz• (X), ~~· = l' (l' +I)- X2 + cpz·- ~7-; 

pzl'=(l,mJ~Xil',m); qll•=(l,m+IJ1XJl',m+I). (17) 

Taking for a the particular value 

and summing over m, we have 

1<2> 9 MR2 2 z,x = IO oiX2 

X {~[I + (21-1) (21 + 5)] 1(1 + 1) (21 + 1)(21 + 5) 
9 2X2 (21- 1) (21 + 3)2 

(18) 

(19) 

+ 2x4 [1(1-1) _ (1+1J(I+2l]+ x 2 [1(1-1)( __ 4 __ I) 
(21- 1)4 (21+ 3)4 (21-1)2 21 - 1 

+ (I t2i~13t 2) (21 ~ 3 +I)]}. 
The moment of inertia of the whole nucleus equals 

(20) 

Here g = 4 is the number of nucleons which can 
simultaneously occupy the state with given l, X, 
and m. 

3. Table I lists the moments of inertia of several 
nuclei obtained by numerically summing (19), in 
terms of the hydrodynamic moment of inertia Ihydr 
which is given in the quadratic approximation by 

Ihydr = io MAmiX~; (21) 

here A is the atomic number of the nucleus. 
We see that in the considered range of A the 

ratio I/Ihydr is several times larger than unity. 
Thus the results obtained in references 1 to 3 do 
not occur in our case. 

Concerning the region of applicability of the 
quadratic approximation, we can make the follow­
ing remarks. As was known earlier and confirmed 
in the present paper, the range of applicability of 
perturbation theory is rather small for states with 
angular momentum l R:: 0. In this case the effec­
tive expansion parameter turns out not to be a 2 

(whichis truefor extremely large Z) but X2a 2, 
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A I 136 I 180 I 184 I 212 I 264 I 276 I 312 I 372 392 

lflhydr /10.51 s.s/ 7.9110.41 9.41 5.0 I 6.5/ 6 115.6 

where X =koR0, and X2 ~ 100. Therefore the 
range of applicability of perturbation theory for 
the moment of inertia is determined, strictly 
speaking, by x2a2 since the states with l = 0; 1; 
.... give a large contribution. However, one can 
expect that the averaged value of the moment will 
be correct over a substantially larger range of a 2• 

This can be explained as follows. We divide all 
states into two groups, states with large l and 
states with small Z, where the latter contain the 
cases l = 0; 1;.... Both groups will give approxi­
mately equal but opposite contributions to the mo­
ment of inertia, with an appreciable mutual can-

cellation of terms containing the parameter ( a 2X2 )2 

taking place. This cancellation, incidentally, turns 
out to be incomplete. This explains the obtained 
oscillations of the moment of inertia as a function 
of A. 
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A general expression for the polarization of recoil nucleons appearing during the production 
of pions by photons has been obtained on the basis of the momentum and parity conservation 
laws. As an example, an expression is derived for the polarization in pion production in s, 
p, and d states. 

l. Measurement of the polarization of the recoil 
nucleons that appear in photoproduction of mesons 
would help clarify, in principle, many important 
problems connected with the difference between 
the Fermi and Yang solutions, with the determina­
tion of small phase shifts in meson-nucleon scat­
tering, with the elimination of the Minami ambi­
guity, etc. 

A theoretical study of the problems of polari­
zation can be made, roughly speaking, in two ways. 
The first, 1 based on the use of the density matrix, 
leads to the most general expressions for polari­
zation, a particular case of interest to us being 
the expression for the polarization P of recoil 
nuclei in meson photoproduction. The second 
method, which employs the phenomenological 

scattering S matrix,2 is simpler, albeit.more 
limited. An expression for P, was obtained by 
the last method in reference 3.* 

In the present work we should like to call at­
tention to still another possibility of obtaining a 
general expression for P within the framework 
of the S matrix. Unlike the authors of reference 
3, we obtained a more general expression for P, 
in which summation over the spin projections of 
the initial particles leads to the Racah coefficient. t 
The use of such a formula facilitates the calcula-

*An expression for P, in the particular case when the 
mesons are produced only in the s and p states, is given by 
Fel'd4 without proof. 

t Naturally, the expression we obtained for P is the same 
as obtained with the aid of the density matrix. 


